Design of a Restartable Clock Generator for Use in GALS SoCs

Masters Thesis Defense

Hu Wang
August 6, 2008

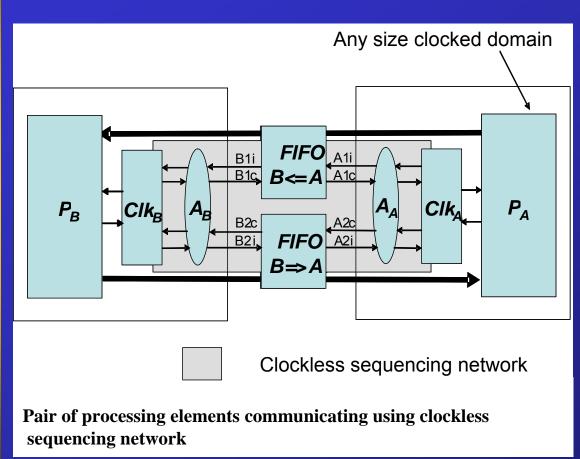
IC Design and Research Laboratory

ECE Department Southern Illinois University of Edwardsville

Design Team

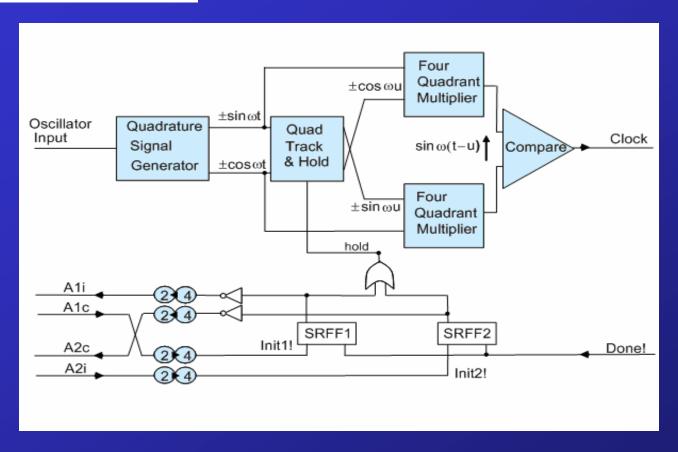
Southern Illinois University Edwardsville

- □ Dr. George Engel
- □ Hu Wang


Blendics Integrated Circuit Systems, LLC

□ President. Jerry Cox

Background


- ➤ Verification occupies 60% to 80% of the engineering hours expended on the design of complex integrated circuits (ICs).
- Module reuse along with elimination of the global verification component of chip design has the potential to cut the design time of future ICs.
- Develop a novel methodology that blends clockless and clocked systems and eliminates the need for global verification. It is a special case of the Globally Asynchronous, Locally Synchronous (GALS) design approach.

Blended Design methodology

- The clock generator serves as a local clock to the data processing subsystem.
- A clockless sequencing network between the two subsystems to initiate the operation of the data processing subsystem's local clock, and to signal an acknowledgment of the completion of that action.
- Avoids synchronizer failures by stopping the clock and then restarting it when data is valid.

Clock Generator

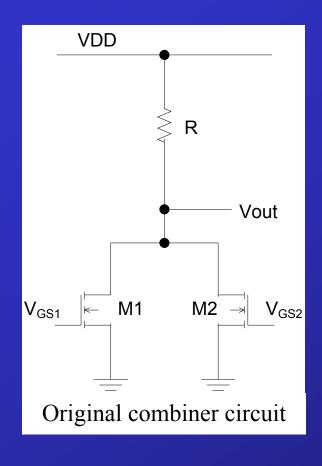


The operation of the clock generator is based on the simple trigonometric identity, $\sin \omega(t-u) = \sin \omega t \cdot \cos \omega u - \cos \omega t \cdot \sin \omega u$

Clock generator

- \triangleright Constructed from a pair of fully-differential analog multipliers, a comparator, a quad track-and-hold (T/H) circuit, a pair of SR latches, and an OR gate.
- The restartable clock can be stopped and then restarted at an arbitrary phase of the source.
- ➤ Can be connected to an external crystal oscillator or a local all-silicon, MEMS-based oscillator as input sources.

Initial Analog Multiplier


First presented by Hsiao and Wu in their paper "A parallel structure for CMOS four-quadrant analog multiplier and its application to a 2-GHz RF down-conversion mixer" in 1998.

Initial Analog Multiplier

- Consist of six combiners which has a symmetrical structures because they combine the input signals to form the output.
- $\triangleright V_B$ is the DC pedestal on which the input signals rest.
- Multiplication of two signals, v_1 and v_2 is achieved through the use of the quarter-square principle shown below

$$x \cdot y = \frac{1}{4}[(x+y)^2 - (x-y)^2]$$

Original Combiner Design

> The Square Law characteristic of a MOS transistor

$$i_{DS} = \frac{1}{2n} \cdot K_{pn} \cdot S_n \cdot (v_{GS} - V_{TN})^2$$

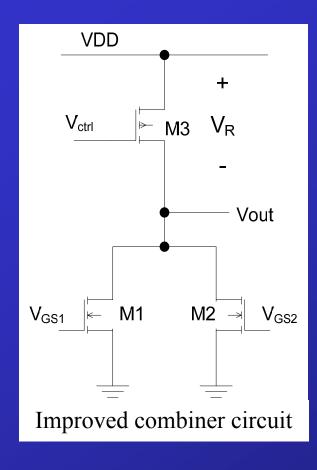
> One of the voltage outputs of the "first stage" combiner

$$v_{out} = \frac{-R}{2n} \cdot K_{pn} \cdot S_n (V_B + v_1 - V_{TN})^2 + \frac{-R}{2n} \cdot K_{pn} \cdot S_n (V_B + v_2 - V_{TN})^2 + V_{DD}$$

The Output Current of the Multiplier

 \triangleright The output currents i_{op} and i_{om}

$$i_{op} = \frac{S_n \cdot K_{pn}}{2n} [v_a^2 + v_b^2 - 2V_{TN} \cdot (v_a + v_b) + 2V_{TN}^2]$$


$$i_{om} = \frac{S_n \cdot K_{pn}}{2n} \left[v_c^2 + v_d^2 - 2V_{TN} \cdot (v_c + v_d) + 2V_{TN}^2 \right]$$

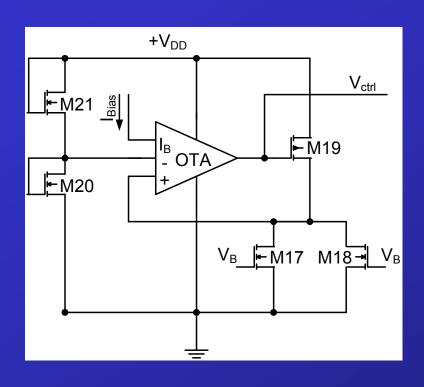
 \triangleright The differential output current of the multiplier, i_{out}

$$i_{out} = K_{mult} \cdot v_1 \cdot v_2$$

where
$$K_{mult} = 4 \left[\left(\frac{S_n \cdot K_{pn}}{n} \right)^3 \cdot R^2 \cdot (V_B - V_{TN})^2 \right]$$

Improved Analog Multiplier

The real resistor is replaced by a PFET transistor working in resistive region.


$$R_{eq} = \frac{n}{K_{pp} \cdot S_p \cdot (V_{DD} - V_{ctrl} - \mid V_{TP} \mid)}$$

➤ Re-written expression of *Kmult*

$$K_{mult} = \left[\frac{2V_R}{(V_B - V_{TN})}\right]^2 \left(\frac{S_n \cdot K_{pn}}{n}\right)$$

By adjusting the control voltage, V_{ctrl} , the resistance can be altered in order that the DC voltage, V_R across device M_3 is tuned to the desired value.

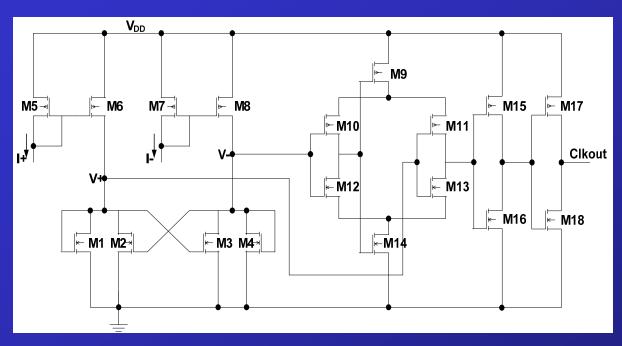
Automatic gain control circuit for resistive PFET

- Voltage divider M20 & M21
- Symmetric Miller type OperationalTransconductance Amplifier (OTA)
- Negative feedback loop to generate the control voltage Vctrl

Sensitivity Analysis

Estimated and simulated results in multipliers

Process Corners	Initial analog multiplier		Improved analog multiplier	
	$\frac{\Delta I_{out_est}}{I_{out_est}}$	$\frac{\Delta I_{out_sim}}{I_{out_sim}}$	$\frac{\Delta I_{out_est}}{I_{out_est}}$	$\frac{\Delta I_{out_sim}}{I_{out_sim}}$
Typical		0		0
Best	54%	26%	-6.5%	0.5%
Worst	-48%	-57%	17.6%	-3.1%


> For initial multiplier:

$$\frac{\Delta I_{out}}{I_{out}} = \frac{\Delta K_{mult}}{K_{mult}} = 2 \cdot \frac{\Delta R}{R} + 3 \cdot \frac{\Delta K_{pn}}{K_{pn}} - 2 \cdot \frac{V_{TN}}{V_B - V_{TN}} \cdot \frac{\Delta V_{TN}}{V_{TN}}$$

> For improved multiplier:

$$\frac{\Delta I_{out}}{I_{out}} = \frac{\Delta K_{mult}}{K_{mult}} = \frac{\Delta K_{pn}}{K_{pn}} + \frac{2 \cdot V_{TN}}{V_B - V_{TN}} \cdot \frac{\Delta V_{TN}}{V_{TN}}$$

High-Speed Comparator

- > Current Mirror
- High-Speed NFET latch
- > Self-biased differential amplifier
- > Push-pull output drivers

Non Ideal Effects

- > Channel length modulation
- Mismatch and offset analysis

Channel length Modulation

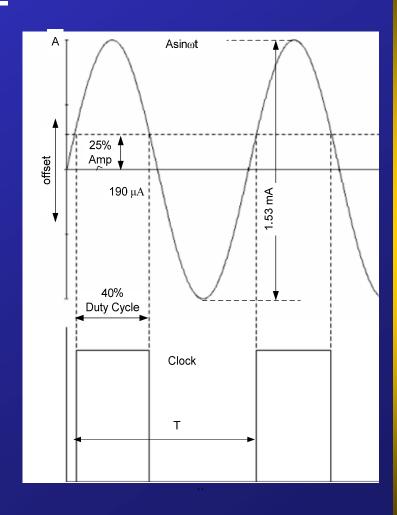
- The *I-V* characteristic of a FET does not fit in the ideal square law. $i_{DS} = \frac{1}{2n} \cdot K_{pn} \cdot S_n \cdot (v_{GS} V_{TN})^2$
- Factor $(1 + \lambda v_{DS})$ should be considered. λ represents the channel length modulation factor which is inversely proportional to the length of the device, L.
- > The multiplier gain

$$K_{mult} = \left[\frac{2V_R}{(V_B - V_{TN})[1 + \lambda \cdot (V_{DD} - V_R)]}\right]^2 \left(\frac{S_n \cdot K_{pn}}{n}\right)$$

Comparison of simulation results

		Mathcad		Electrical
		With λ	Without λ	Simulation
Output of the multiplier's first-stage combiner	I _{Req}	680 μΑ	604 μΑ	706 μΑ
	V _{BO1}	0.5 V	0.5 V	0.49 V
Peak-to-peak output	l _{out}	1.49mA	1.59mA	1.53mA

Note: IReq is DC drain-to-source current of PFET M3 in the multiplier's first-stage combiners.


VBO1 is the DC output voltage for the first-stage combiners.

Iout is the peak-to-peak differential current transferred to the NMOS latch in the comparator

If λ is included, the analytical predictions agree closely (within 5%) with the results obtained from electrical simulations.

Mismatch and offset analysis

- Random offsets due to mismatch in transistor parameters will result in the clock's duty cycle differing from the ideal fifty percent.
- In fact, if the offset current becomes larger than the peak differential output current, the clock becomes stuck at one logic level.
- The standard deviation of the offset current was computed as 15 μA. The 6σ value, 90μA is well below the upper limit of 190 μA which was needed to ensure a reasonable duty cycle for the output clock.

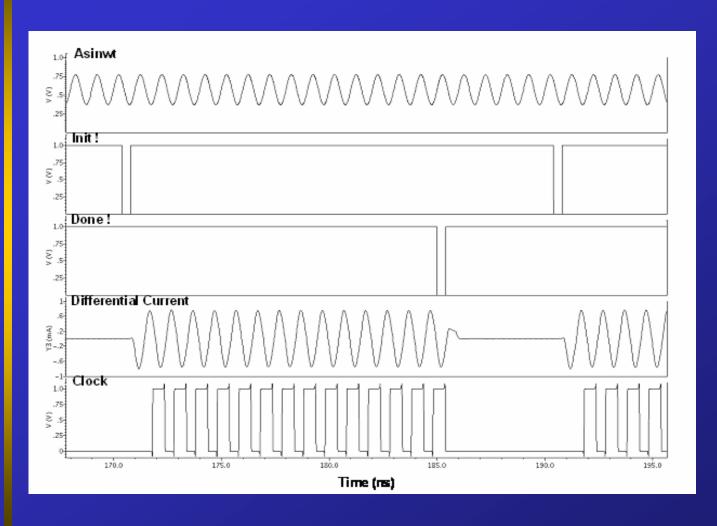
Variance computed at each stage

For NFET in the "first stage" combiner

$$\sigma_{I_{DS1}}^{2} = g_{m1}^{2} \cdot \sigma_{V_{TN}}^{2} + I_{DS1}^{2} \cdot \left(\frac{\sigma_{K_{pn}}^{2}}{K_{pn}^{2}} + \frac{\sigma_{W_{n}}^{2}}{W_{n}^{2}} + \frac{\sigma_{L_{n}}^{2}}{L_{n}^{2}} \right) = (2.5 \mu A)^{2}$$

For the resistive PFET of the "first stage" combiner

$$\sigma_{R_{eq}}^{2} = R^{2} \cdot \left(\frac{\sigma_{V_{TP}}^{2}}{V_{SAT}^{2}} + \frac{\sigma_{K_{pp}}^{2}}{K_{pp}^{2}} + \frac{\sigma_{W_{p}}^{2}}{W_{p}^{2}} + \frac{\sigma_{L_{p}}^{2}}{L_{p}^{2}} \right) = (4.3\Omega)^{2}$$

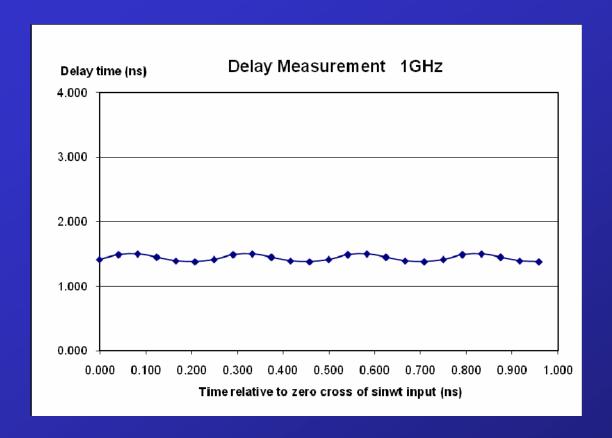

For the output of the "first stage" combiner

$$\sigma_{V_{O1}}^2 = 2R_{eq}^2 \sigma_{I_{DS1}}^2 + (2I_{DS1})^2 \sigma_{R_{eq}}^2 = (3.8mV)^2$$

For the differential current output delivered to the NMOS latch

$$\sigma_{I_{out}}^{2} = 8 \cdot g_{m2}^{2} \cdot (\sigma_{V_{TN}}^{2} + \sigma_{V_{O1}}^{2}) + 8 \cdot I_{DS2}^{2} \cdot \left(\frac{\sigma_{K_{pn}}^{2}}{K_{pn}^{2}} + \frac{\sigma_{W_{n}}^{2}}{W_{n}^{2}} + \frac{\sigma_{L_{n}}^{2}}{L_{n}^{2}}\right) = (15 \mu A)^{2}$$

Simulation results


 $V_B = 570 \text{mV}$

Amp = 200mV

Freq = 1GHz

Duty cycle ≈ 50%

Simulation result (cont.)

- ➤ Delay in restarting clock is less than 1.5 ns.
- The peak-to-peak variation in the time required to restart the clock is 120 psec.

Summary

- ➤ The restartable clock generator is implemented in 90nm CMOS process.
- Completely transistor design without resistors existing in the circuit.
- ➤ Up to 1GHz, clock frequency can be achieved across different process corners.
- > Only a single 1V supply is required with 10mW power consumption.
- The duty cycle of the clock output is near 50%.
- The delay in restarting the clock is small, less than 1.5ns.

Conclusion

- The restartable clock can be stopped and then restarted at an arbitrary phase of the source, like a delay based clock.
- > Completely eliminates metastability hazards.
- Can be connected to an external crystal oscillator or a local all-silicon, MEMS-based oscillator as input sources.

Further work

- A small systematic offset should be added into the comparator to ensure that the clock always restart from low to high.
- Monte Carlo simulations to confirm the results presented in thesis predicting the likely offset current will be performed in the future.
- Efficiently generate the quadrature input signals from an external crystal oscillator or MEMS-based clock.

Acknowledgement

- □ Dr. George Engel, SIUE
- □ President. Jerry Cox, Blendics, LLC
- ☐ Mr. Sasi K. Tallapragada
- Mr. Dinesh Dasari
- □ Mr. Nagendra S. Valluru
- □ NSF-STTR and Blendics, LLC

Thank You!

Hu Wang
Graduate student
Email: hwang@siue.edu

IC Design Research Laboratory
Electrical and Computer Engineering Department

Southern Illinois University Edwardsville