Chem 121a, Quiz 3
Fall Semester, 1998

Name:	
SSN:_	

DIRECTIONS: Carefully mark the appropriate answer to each question on the Scantron sheet and show your work in the space provided. Each question is worth 1 point (20 points total). Write your name and the color (blue, green, yellow, pink) of the exam on the Scantron sheet. Please hand in both the guiz and the Scantron sheet.

Potentially useful information:

$$c = 2.9979 \times 10^8 \text{ m/s}$$
 $h = 6.626 \times 10^{-34} \text{ J s}$

$$h = 6.626 \times 10^{-34} \text{ J s}$$

$$c =$$

$$E = h$$

1. Which of the following frequencies corresponds to light with the longest wavelength?

a.
$$3.00 \times 10^{13} \text{ s}^{-1}$$
 b. $4.12 \times 10^5 \text{ s}^{-1}$ d. $9.12 \times 10^{12} \text{ s}^{-1}$ e. $3.20 \times 10^9 \text{ s}^{-1}$

b.
$$4.12 \times 10^5 \text{ s}^{-1}$$

c.
$$8.50 \times 10^{20} \text{ s}^{-1}$$

d.
$$9.12 \times 10^{12} \text{ s}^{-1}$$

e.
$$3.20 \times 10^9 \text{ s}^{-1}$$

2. When a hydrogen electron makes a transition from n = 3 to n = 1, which of the following statements is true?

- I. Energy is emitted.
- II. Energy is absorbed.
- III. The electron loses energy.
- IV. The electron gains energy.
- V. The electron cannot make this transition.

3. Green light has a wavelength of 5.50×10^2 nm. The energy of a photon of green light is

a.
$$3.64 \times 10^{-38} \text{ J}$$
 b. $2.17 \times 10^{5} \text{ J}$

d.
$$1.09 \times 10^{-27} \text{ J}$$
 e. $5.45 \times 10^{12} \text{ J}$

e.
$$5.45 \times 10^{12} \text{ J}$$

4. In the phenomenon called the greenhouse effect the molecules H₂O and CO₂ play an important role in retaining the atmosphere's heat.

a. true

b. false

5. When 0.157 mol NH₃ is reacted with excess HCl, 6.91 kJ of energy is released as heat. What is H for this reaction per mole of NH₃ consumed?

e.
$$+44.0 \text{ kJ}$$

6. Given: $Cu_2O(s) + 1/2 O_2(g)$ 2CuO(s) H = -144 kJ

 $Cu_2O(s)$ Cu(s) + CuO(s) H = +11 kJ

Calculate the standard enthalpy of formation of CuO(s): $Cu(s) + O_2(g)$ CuO(s)

a. -166 kJ

b. -299 kJ

c. +299 kJ

d. +155 kJ

e. -155 kJ

7. The H value for the reaction _ O₂ (g) + Hg(l) HgO(s) is -90.8 kJ. How much heat is released when 32.5 g Hg is reacted with excess oxygen?

a. 9.32 kJ

b. 90.8 kJ

c. 14.7 kJ

d. 40.0 kJ

e. 66.4 kJ

8. In the lab, you mix two solutions (each originally at the same temperature) and the temperature of the resulting solution decreases. Which of the following is true?

a. The chemical reaction is releasing energy.

b. The energy released is equal to $s \times m \times T$.

c. The chemical reaction is absorbing energy.

d. The chemical reaction is exothermic.

e. Not enough data to decide.

9. What is the specific heat capacity of mercury if it requires 167 J to change the temperature of 15.0 g mercury from 25.0°C to 33.0°C?

a. 6.92 x 10 J/g°C

b. 1.12 x 10 J/g°C

c. 0.445 J/g°C

d. 1.39 J/g°C

e. 313 J/g°C

10. Which of the following are state functions?

I. energy

II. work

III. enthalpy

IV. heat

a. I, II

b. I, III

c. II, III

d. I, II, III

e. All are state functions.

b. The c. E = d. All	t flows from the system does wo = 35 kJ. of these are true. e of these are true.	rk on the surro	_	;s.			
12. How man	y of these staten	nents are true?					
III. Th	mc ² ctromagnetic rad e energy of matt ergy is not a stat	er is not contin	_		-	led photons.	
a. 4	b. 3	c. 2	d.	1	e. zero		
13. What is the wavelength of a photon of red light (in nm) whose frequency is $4.60 \times 10^{14} \text{ Hz}$?							
	nm b.		c.	153 nm			
14. Under cor is equa	nditions of const l to	ant pressure, th	e heat flow	that occurs o	during a che	mical change	
a. E	b.	T	е. Н	d. V	e	. <i>w</i>	
15. Calculate the work for the expansion of CO ₂ from 1.0 to 2.5 liters against a pressure of 1.0 atm at constant temperature.							
	liter atm 5 liter atm	b. 2.5 lit e2.5 li			c. 0		

11. For a particular process q = 20 kJ and w = 15 kJ. Which of the following statements is true?

16. The device used to measure the heat associated with a chemical reaction is a

a. heat-O-meter

b. calorimeter

c. bomb capacitor

d. thermometer

e. combustion chamber

17. According the first law of thermodynamics, energy can be

a. created

b. transformed

c. changed into mass

d. destroyed

e. all of these

 \mathbf{C}

18. Consider the following processes:

A + 2B

G

H = +45.0 kJ/mol

C + 4B

E + 2G

H = -66.0 kJ/mol

Calculate the H for this reaction:

E + 2A

a. 156 kJ

b. -21 kJ

c. 24 kJ

d. 111 kJ

e. 87 kJ

19. Equal amounts of heat are added to equal masses of metals A and B. The temperature increase of metal A is three times greater than the temperature increase of metal B, therefore the specific heat capacity of A must be:

a. greater than the specific heat capacity of metal B

b. less than the specific heat capacity of metal B

c. equal to the specific heat capacity of metal B

20. Using the information below, calculate H_f^o for PbO(s).

PbO(s) + CO(g)

 $Pb(s) + CO_2(g)$

 $H^{\circ} = -131.4 \text{ kJ}$

 H_f^o for $CO_2(g) = -393.5 \text{ kJ/mol}$

 H_f^o for CO(g) = -110.5 kJ/mol

a. -151.6 kJ/mol

b. -283.0 kJ/mol

c. +282.0 kJ/mol

d. -372.6 kJ/mol

e. +252.1 kJ/mol