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1 Background and Introduction

Dating back to the mathematics studies in ancient Greece, circles and their
properties have been studied by hundreds of mathematicians. While it is
interesting enough to study a single circle, more possibilities arise when con-
sidering a collection of circles in relation to one another. In the mid-1600s,
Rene Descartes first introduced a relation connecting the four radii of what
would come to be known as Descartes Configurations. For centuries, many
mathematicians made discoveries that eventually came together to prove the
Descartes Circle Theorem and many generalizations of the relation in it.

Given an arbitrary set of four circles, there is no reason to suspect that the
circles will interact in a special way. However, if we begin to impose a few
particular conditions, several interesting relationships arise. Descartes config-
urations present an arrangement of circles with specific properties that lead to
surprising relationships. Investigating generalizations of the Descartes Circle
Theorem allows for exploration into these relationships. These investigations
will be guided primarily by the paper Beyond the Descartes Circle Theorem
by J. Lagarias, C. Mallows, and A. Wilks [1].

Definition 1. [1] A Descartes configuration is an arrangement of four mutually
tangent circles in the plane, in which no three circles share a tangent. If the
radii of these circles are r1, r2, r3, r4, then the curvatures are bj = 1

rj
.

The four general cases for Descartes configurations are shown in Figure 1. The



Figure 1: Possible Descartes Configurations [1]

Descartes Circle Theorem relates the curvatures of the circles in a Descartes
configuration in an interesting way.

Theorem 1. [1] (Descartes Circle Theorem). In a Descartes configura-
tion of circles, the curvatures satisfy

4∑
j=1

b2j =
1

2

(
4∑
j=1

bj

)2

. (1)

Introducing further specifications involving the centers and orientations of the
circles, the surprising relationships continue to develop. First, we can incor-
porate the centers of the circles to state Theorem 2. The next restriction to
impose is orientation. The notion of orientation will be necessary to general-
ize Theorem 1 to higher dimensions, so I will begin by expanding upon this
concept.

Definition 2. [1] An oriented circle is a circle together with an assigned
direction of unit normal vector, which can point inward or outward.

Definition 3. [1] An oriented Descartes configuration is a Descartes configu-
ration in which the orientations of the circles are compatible in the following
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Figure 2: Inward vs. Outward Orientation

Figure 3: Oriented Descartes Configuration

sense: either (i) the interiors of all four circles are disjoint, or (ii) the interiors
are disjoint when all orientations are reversed.

Figure 2 illustrates the two distinct types of orientation: inward and outward.
Figure 3 gives one example of an oriented Descartes configuration. Notice
that if the orientations were to be changed for up to three of the circles in this
specific example, it would no longer fit the definition for an oriented Descartes
configuration.

We will now begin to consider Descartes configurations under specific con-
ditions. First, we will incorporate the idea of centers, then we will explore
configurations in higher dimensions of real space.
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2 Euclidean Generalizations of the Descartes

Circle Theorem

The first instance in which we explore a generalization of the Descartes Circle
Theorem is to investigate the complex version. Then we will begin representing
the relationships between these circles using linear algebra, a technique that
will be used throughout the remainder of these discussions.

Theorem 2. [1] (Complex Descartes Theorem). Any Descartes config-
uration of four mutually tangent circles with curvatures bj and centers zj =
xj + iyj satisfies

4∑
j=1

(bjzj)
2 =

1

2

(
4∑
j=1

bjzj

)2

. (2)

The relations resulting from Equation 2 can be expressed using linear algebra.
But first, we must establish how the matrices used are developed from the
available information.

Let n ∈ N and define Qn by

Qn := In+2 −
1

n
1n+21

T
n+2,

where 1k denotes a column vector of k ones.

Therefore,

Q2 = I4 −
1

2
141

T
4 =

1

2


1 −1 −1 −1
−1 1 −1 −1
−1 −1 1 −1
−1 −1 −1 1

 .
We call Q2 the coefficient matrix of the Descartes quadratic form

Q2(x1, x2, x3, x4) := xTQ2x = (x21 + x22 + x23 + x24)−
1

2
(x1 + x2 + x3 + x4)

2.

This relates directly to Equations 1 and 2. If b = (b1, b2, b3, b4) then Q2(~b) = 0
if and only if Equation 1 is satisfied. Similarly, if b = (b1z1, b2z2, b3z3, b4z4)
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then Q2(~b) = 0 if and only if Equation 2 is satisfied. Using the curvatures
and centers of the circles in a Descartes configuration along with Q2, we can
develop the Extended Descartes Theorem.

Theorem 3. [1] (Extended Descartes Theorem). Given a configura-
tion of four oriented circles with nonzero curvatures (b1, b2, b3, b4) and centers
{(xi, yi) : 1 ≤ i ≤ 4}, let M be the 4× 3 matrix

M :=


b1 b1x1 b1y1
b2 b2x2 b2y2
b3 b3x3 b3y3
b4 b4x4 b4y4

 .
Then this configuration is an oriented Descartes configuration if and only if

MTQ2M =

 0 0 0
0 2 0
0 0 2

 .
Theorem 3 will be of great importance since it contains an if and only if
statement about oriented Descartes configurations. For now, however, we
return to the idea of orientation in order to generalize the results of Theorem 1
to apply to Rn. In these higher dimensions, the four circles we were considering
are now (n+2) mutually tangent (n − 1)- spheres in Rn, no (n + 1) of which
share a tangent hyperplane. In order to make these generalizations, we also
introduce the concepts of signed curvature and curvature-centered coordinates.

Definition 4. Given an oriented circle, its signed curvature, b, gives the cur-
vature and direction of orientation. If a circle is considered to be oriented
outward, then b > 0; if a circle is considered to be oriented inward, then b < 0.

Definition 5. [1] Given an oriented sphere S in Rn, its curvature-centered
coordinates consist of the (n+1)-vector

m(S) = (b, bx1, bx2, ..., bxn),

in which b is the signed curvature of S and x(S) = (x1, x2, ..., xn) is its center.

Extending Theorem 3 to n dimensions and incorporating the idea of curvature-
centered coordinates leads to the Euclidean Generalized Descartes Theorem.
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Theorem 4. [1] (Euclidean Generalized Descartes Theorem).Given
a configuration of n+2 oriented spheres S1, S2, .., Sn+2 in Rn, let M be the
(n + 2) × (n + 1) matrix whose jth row entries are the curvature-center coor-
dinates m(Sj) of the jth sphere. If this configuration is an oriented Descartes
configuration, then

MTQnM =

[
0 0
0 2In

]
.

Conversely, any real solution M to the above equation is the matrix containing
the curvature-center coordinates of a unique oriented Descartes configuration.

In order to make further generalizations from Theorem 4 we must be able to
invert the original oriented Descartes configuration in the unit sphere. We
establish a notion of augmented curvature center coordinates.

Definition 6. [1] Inversion in the unit sphere maps the point x to x/ |x|2
where

|x|2 =
n∑
j=1

x2j .

Next we aim to understand how this mapping applies to the center and radius
of an inverted circle in the unit sphere. In order to do this we use the following
lemma and proposition.

Lemma 5. [4] Let O be a point not lying on circle S. If two lines through
O intersect S in pairs of points (P1, P2) and (Q1, Q2), respectively, then OP1 ·
OP2 = OQ1 ·OQ2. This common product is called the power of O with respect
to S when O is outside S, and minus this number is called the power of O
when O is inside S.

Proposition 1. [4] Let U be a circle of radius u and center O, S a circle of
radius r and center x. Assume that O lies outside S; let p be the power of O
with respect to S. Let k = u2/p. Then the image S̄ of S under inversion in U
is the circle of radius kr whose center is the image x∗ of x under the dilation
from O of ratio k.

Since we are interested in inversion in the unit sphere, let U be the unit
sphere with radius u = 1 and center O = (0, 0). Let S be a circle of radius
r and center x. Based on Lemma 5, the power of O is p = |x|2 − r2 and
k = u2/p = 1/ |x|2 − r2. So the image S̄ has radius kr = r/ |x|2 − r2 and
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center kx = x/ |x|2 − r2. Therefore, an oriented sphere S with center x and
oriented radius r inverts to the sphere S̄ with center x̄ = x/(|x|2 − r2) and
oriented radius r̄ = r/(|x|2 − r2). In all cases,

x̄

r̄
=

x/(|x|2 − r2)
r/(|x|2 − r2)

=
x

r
(3)

and

b̄ =
1

r̄
=

(|x|2 − r2)
r

=
|x|2

r
− r.

If we add a column to the (n+ 2)× (n+ 1) matrix M (from Theorem 4) using
information about the inversion of the oriented Descartes configuration, it can
be expanded into an (n+ 2)× (n+ 2) matrix W.

Definition 7. [1] Given an oriented sphere S in Rn, its augmented curvature-
center coordinates are the (n+ 2)-vector

w(S) := (b̄, b, bx1, ..., bxn) = (b̄,m),

in which b̄ is the oriented curvature of the sphere S̄ obtained by inversion of S
in the unit sphere, and the entries of m are the curvature-center coordinates
of S.

Augmented curvature-center coordinates are unique to distinct spheres. Be-
cause the augmented curvature-center coordinates are found by using both the
center and the curvature (which is found using the radius), the only way two
spheres could have the same augmented curvature center coordinates would
be for them to have the same center and same radius. In this case, the spheres
would not be distinct.

Definition 8. [1] Given a collection of (S1, S2, ..., Sn+2) of n + 2 oriented
spheres in Rn, the augmented matrix W associated with it is the (n+2)×(n+2)
matrix whose jth row has entries given by the augmented curvature-center
coordinates w(Sj) of the jth sphere.

Augmented matrix coordinates provide a simple result with inversion in the
unit sphere. The radii of the original and inverted spheres can be related to
each other via curvatures. The action of inverting an inverted sphere results
in obtaining the original sphere. Therefore, ¯̄b = b. Also, by Equation 3 we can
see that x̄b̄ = xb. Thus we form W′, the augmented matrix associated with
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an inverted sphere, by merely interchanging the first two columns of W. This
can be represented mathematically in the following way

W′ = W

 0 1 0
1 0 0
0 0 In

 .
We will modify Theorem 4 to replace curvature center coordinates with their
augmented counterparts. This result gives the Augmented Euclidean Descartes
Theorem.

Theorem 6. [1] (Augmented Euclidean Descartes Theorem) The aug-
mented matrix W of an oriented Descartes configuration of n + 2 spheres
{Si : 1 ≤ i ≤ n+ 2} in Rn satisfies

WTQnW =

 0 −4 0
−4 0 0
0 0 2In

 . (4)

Conversely, any real solution W to Equation 4 is the augmented matrix of a
unique oriented Descartes configuration.

Theorem 6 will be proven later, however we must first delve into spherical
generalizations of the Descartes Circle Theorem. Once the spherical results
of the Descartes Circle Theorem are proven, we will be able to prove the
accompanying Euclidean generalizations.

3 Spherical Generalizations of the Descartes

Circle Theorem

Now we turn our attention to spherical geometry in order to expand upon
these investigations. First, we clarify the spherical analogs to the already-
established Euclidean forms. The standard model for spherical geometry is
the unit n-sphere Sn in Rn+1 as

Sn := {y : y20 + y21 + ...+ y2n = 1}.

The distance between two points of Sn is the angle α between the radii that
join the origin of Rn+1 to these points on Sn, such that 0 ≤ α ≤ π. We know
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this to be the distance because of the relationship between central angles and
arc length. Arc length is calculated by taking a fraction of the circumference
proportional to the central angle intercepting the given arc. Since the radius is
1 in the unit sphere, the circumference of the circle is equal to 2π, the amount
of radians in an entire circle. Therefore, the central angle, α determines and is
equal to the arc length. A sphere C is the locus of points that are equidistant
from a point in Sn called its center. There are two choices for the center of
a given sphere which form a pair of antipodal points of Sn. The choice of
center amounts to orienting the sphere. The interior of a sphere is a spherical
cap, formed by the intersection of the sphere Sn and a plane in Rn+1. Thus,
a spherical cap is an oriented sphere. The two spherical caps formed by the
intersection of a single plane with a given sphere are called complementary.
The interior of an oriented sphere contains all points of Sn on the same side
of the plane as the center of the sphere.

Similarly to its analog in Euclidean geometry, a spherical Descartes config-
uration consists of n + 2 mutually tangent spherical caps on the surface of
the unit n-sphere such that either (i) the interiors of all spherical caps are
mutually disjoint, or (ii) the interiors of all complementary spherical caps are
mutually disjoint. The idea of spherical Descartes configurations along with
an understanding of spherical curvature-center coordinates will lead us to the
Spherical Generalized Descartes Theorem.

Definition 9. [1]If C is a spherical cap with center y = (y0, y1, ..., yn) and
angular radius α, the spherical curvature-center coordinates w+(C) are defined
by

w+(C) := (w−1, w0, w1, ...wn) = (cotα,
y0

sinα
,
y1

sinα
, ...,

yn
sinα

). (5)

(Note: This indexing accounts for the (n + 2) entries and will be consistent
with the indexing for curvature center coordinates, discussed later.)

We obtain the (n + 2) × (n + 2) spherical curvature-center coordinate matrix
W+ by making each row the spherical curvature-center coordinates of the
corresponding n+ 2 caps.

Now that we have established a basic understanding of spherical curvature-
center coordinates, we use this knowledge to present the Spherical Generalized
Descartes Theorem. This theorem is an integral part of the proof of Theorem
6.

Theorem 7. [1] (Spherical Generalized Descartes Theorem). Con-
sider a configuration of n+2 oriented spherical caps, Cj, that is a spherical
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Descartes configuration. The (n + 2) × (n + 2) matrix W+ whose jth row is
the spherical curvature-center coordinates of Cj satisfies

WT
+QnW+ =

 −2 0 0
0 2 0
0 0 2In

 . (6)

Conversely, any real matrix W+ that satisfies Equation 6 is the spherical
curvature-center coordinate matrix of some spherical Descartes configuration.

In order to prove Theorem 7, we introduce three lemmas. Let Jn be the
(n+ 2)× (n+ 2) matrix

Jn =

 −1 0 0
0 1 0
0 0 In

 .
Lemma 8. [1]

(i) For any (n + 2)-vector w+, there is a spherical cap C with w+(C)=w+ if
and only if

w+Jnw
T
+ = 1. (7)

(ii)The spherical caps C and C
′

are externally tangent if and only if

w+(C)Jnw+(C
′
)T = −1. (8)

Proof. (i) Let C be a spherical cap with w+(C)=w+ = (w−1, w0, ...wn). Mul-
tiplying w+ by Jn will result in w+ with the first entry negated. All other
entries will remain the same. We can then think of the entries of this row
vector as being (−w−1, w0, ...wn). Multiplying this result by the column vec-
tor wT

+ results in a (1 × 1) matrix with the entry (−w2
−1 + w2

0 + ... + w2
n).

Based on the definition given in Equation 5, these entries can be rewritten
using trigonometric functions and the curvature centered coordinates from y.
Therefore, if w+ comes from a spherical cap with center y and angular radius
α, then

w+Jnw
T
+ =

−(cosα)2 +
∑n

i=0 y
2
i

(sinα)2
. (9)

Because we are working on a unit n-sphere, the sum of the squares of the
curvature centered coordinates must equal 1. Thus, we can rewrite the result
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from Equation 9 in the following way

−(cosα)2 +
∑n

i=0 y
2
i

(sinα)2
=

1− (cosα)2

(sinα)2
= 1.

If we take Equation 7 to be true, then we could use the same mathematical
concepts in the reverse order to obtain Equation 9. Define α by setting cotα :=
(w+)−1 (note: α 6= 0), and define a vector y = (y0, y1, ..., yn) by yi := (w+)i ·
sinα. Using these definitions,

w+Jnw
T
+ = 1

−w2
−1 + w2

0 + w2
1 + ...+ w2

n = 1

−(cotα)2 +

∑n
i=0 y

2
i

sinα2
= 1

− cosα2 +
∑n

i=0 y
2
i

sinα2
= 1

− cosα2 +
n∑
i=0

y2i = sinα2

n∑
i=0

y2i = sinα2 + cosα2

n∑
i=0

y2i = 1.

Therefore, the sum of the squares of the curvature centered coordinates equals
one. Thus, y lies on the unit sphere, and there is a spherical cap that gives
the vector w+.

(ii) Let C and C ′ be externally tangent spherical caps with centers y and y′,
and angular radii, α and α′. Because the spheres are externally tangent, the
angle between their centers is α + α′.

The computation of y(y′)T to find the distance between the centers amounts
to taking the dot product of the two vectors. Therefore,

y(y′)T = |y||(y′)T | cos θ

where θ is the angle between the vectors. The magnitudes of both vectors are
1 since we are working on a unit sphere. Therefore, since θ = α + α′,

y(y′)T = cos(α + α′). (10)
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Figure 4: Sphere with externally tangent spherical caps

Now,

w+Jnw
T
+ = −w−1w′−1 + w0w

′
0 + ...+ wnw

′
n

= − cotα cotα′ +
y0y
′
0

sinα sinα′
+ ...+

yny
′
n

sinα sinα′

=
1

sinα sinα′
(− cosα cosα′ + y(y′)T ).

Using Equation 10 and the trigonometric identity

cos(α + α′) = cosα cosα′ − sinα sinα′

we obtain

1

sinα sinα′
(− cosα cosα′ + y(y′)T ) =

1

sinα sinα′
(− cosα cosα′ + cosα cosα′ − sinα sinα′) = −1.

Therefore, Equation 8 holds. Next, assume w+(C)Jnw+(C
′
)T = −1 for two

spherical caps, C and C ′. Using the same mathematical logic as in the previous
part of the proof we know that

w+Jnw
T
+ = −w−1w′−1 + w0w

′
0 + ...+ wnw

′
n

=
1

sinα sinα′
(− cosα cosα′ + y(y′)T ) = −1.
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Solving for y(y′)T and using the cosine addition formula gives y(y′)T = cos(α+
α′). Thus, C and C ′ are externally tangent when w+(C)Jnw+(C

′
)T = −1.

Lemma 9. [1] If we assume that A and B are non-singular n × n matrices
and WAWT = B, then WTB−1W = A−1.

Proof. If the determinant of matrix W equals zero, then the determinant
of matrix B would have to be zero, which is a contradiction because B is
non-singular. Therefore, the determinant of W is not zero and W is also non-
singular. If we invert both sides of WAWT=B then we have (WT )−1A−1W−1

= B−1. Multiplying on the left on both sides of the equation by WT and on
the right on both sides of the equation by W gives WTB−1W=A−1.

Lemma 10. For all n ∈ N,

2In+2 − 1n+21
T
n+2 = 2Q−1n .

Proof. This relationship will be shown in a general manner for the case n = 2,
however the same approach can be applied for all values of n. We begin by
expanding Qn in order to find the inverse of the matrix. Expanding Qn gives

Qn =


1− 1/n −1/n −1/n −1/n
−1/n 1− 1/n −1/n −1/n
−1/n −1/n 1− 1/n −1/n
−1/n −1/n −1/n 1− 1/n



=
1

n


n− 1 −1 −1 −1
−1 n− 1 −1 −1
−1 −1 n− 1 −1
−1 −1 −1 n− 1

 .
We will find the inverse of the matrix by using elemtary row operations on an
augmented matrix. The result will then be multiplied by n, the inverse of 1/n.

n− 1 −1 −1 −1 1 0 0 0
−1 n− 1 −1 −1 0 1 0 0
−1 −1 n− 1 −1 0 0 1 0
−1 −1 −1 n− 1 0 0 0 1

 =


1 0 0 0 n−3

n(n−4)
1

n(n−4)
1

n(n−4)
1

n(n−4)
0 1 0 0 1

n(n−4)
n−3

n(n−4)
1

n(n−4)
1

n(n−4)
0 0 1 0 1

n(n−4)
1

n(n−4)
n−3

n(n−4)
1

n(n−4)
0 0 0 1 1

n(n−4)
1

n(n−4)
1

n(n−4)
n−3

n(n−4)

 .
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So we have

Q−1n = n


n−3

n(n−4)
1

n(n−4)
1

n(n−4)
1

n(n−4)
1

n(n−4)
n−3

n(n−4)
1

n(n−4)
1

n(n−4)
1

n(n−4)
1

n(n−4)
n−3

n(n−4)
1

n(n−4)
1

n(n−4)
1

n(n−4)
1

n(n−4)
n−3

n(n−4)

 =


n−3
n−4

1
n−4

1
n−4

1
n−4

1
n−4

n−3
n−4

1
n−4

1
n−4

1
n−4

1
n−4

n−3
n−4

1
n−4

1
n−4

1
n−4

1
n−4

n−3
n−4

 .
Because we were doing this for the case of n = 2, we can rewrite the constants
3 and 4 in terms of n. Thus,

Q−1n =


n−(n+1)
n−(n+2)

1
n−(n+2)

1
n−(n+2)

1
n−(n+2)

1
n−(n+2)

n−(n+1)
n−(n+2)

1
n−(n+2)

1
n−(n+2)

1
n−(n+2)

1
n−(n+2)

n−(n+1)
n−(n+2)

1
n−(n+2)

1
n−(n+2)

1
n−(n+2)

1
n−(n+2)

n−(n+1)
n−(n+2)

 =


1
2
−1

2
−1

2
−1

2

−1
2

1
2
−1

2
−1

2

−1
2
−1

2
1
2
−1

2

−1
2
−1

2
−1

2
1
2

 .

We now have the necessary information to prove the Spherical Generalized
Descartes Theorem.

Proof. The matrix W+JnW
T
+ provides information about the relationships

between n spherical caps. By Lemma 8, if the entries along the diagonal of a
matrix are 1 the information used to obtain those values describes a spherical
cap. If the other entries in the matrix are −1 then the caps whose coordinates
were used to calculate that value are externally tangent. Therefore, if the caps
Cj form a spherical Descartes configuration, Lemma 8 ensures that

W+JnW
T
+ = 2In+2 − 1n+21

T
n+2 = 2Q−1n .

By applying Lemma 9 to this result (with A = Jn = J−1n and W = W+) we
obtain

WT
+QnW+ = 2J−1n = 2Jn.

In order to translate the proof of Theorem 7 back into Euclidean geometry,
the idea of stereographic projection must be employed. As a reference for
stereographic projection we use [2]. This explanation will be presented in
R3, however it can be generalized to higher dimensions. Let the Euclidean
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plane be represented by y0 = 0 in three-space and consider the unit sphere,
y20 + y21 + y22 = 1, then for any point Q = (0, Q0, Q1) in the Euclidean plane,
draw a line through Q and the South Pole of the sphere P = (−1, 0, 0). This
line intersects the sphere at point Q′. In this way, the entire Euclidean plane
can be mapped to the sphere, with the exclusion of one point (the North Pole,
also called the point of projection). Mappings by stereographic projection
hold the following special properties. We state without proof this well known
theorem.

Theorem 11. [3] Stereographic projection maps lines and circles in the plane
to circles on the sphere, and, conversely, circles on the sphere map stereograph-
ically to lines and circles in the plane.

Definition 10. [3] A mapping of a subset of the plane into the plane is said
to be conformal at a point P if it preserves the angle between any two curves
at P.

Because the mapping of stereographic projection is conformal and bijective,
we can use the same idea to map the sphere to the plane.

For the sake of this project, we will instead consider the point of projection,
P , to be located at the “South Pole”, or P = (−1, 0, ..., 0) on the unit sphere
in Rn+1. The points on this sphere will be mapped to the plane y0 = 0 by
stereographic projection. If we are mapping (y0, y1, ..yn) to (x1, x2, ..., xn), we
can determine the equation of the line through the point of projection and
the initial point. If we have the equation of the line through the point of
projection and a point on the sphere, we can find where the line intersects
the plane y0 = 0. We can move between P and the initial point, Q, by
the expression (1 − t)(y0, y1, ..., yn) = t(−1, 0, ..., 0) where we obtain point P
when t = 1 and we obtain point Q when t = 0. Expanding this to give
the expressions for individual coordinates along the line gives a generalization
that can be used for other points, (i.e. (x1, x2, ..., xn)). This expansion is
((1− t)y0− t, (1− t)y1, ..., (1− t)yn). Because we are wanting to see where the
line intersects the plane y0 = 0, we need to find the value for t that will make
our 1st coordinate zero. Therefore,
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(1− t)y0 − t = 0

y0 − ty0 − t = 0

y0 − t(y0 + 1) = 0

t =
y0

y0 + 1
.

We can find the remaining coordinates by substituting this value in for t. For
example, the second coordinate, x2 can be found as follows,

x2 = (1− t)y1 =

(
1− y0

y0 + 1

)
y1 =

y1
y0 + 1

.

Generalizing this to all subsequent coordinates, the mapping of (y0, ..., yn)→
(x1, ..., xn) is given by

xi =

(
yi

1 + y0

)
, 1 ≤ i ≤ n.

A spherical cap C with center (p0, ..., pn) and angular radius α is the intersec-
tion of the unit sphere with the plane

n∑
i=1

piyi = cosα (11)

where yi is a variable point on the plane. If we take y to be on the edge of the
spherical cap C, then

n∑
i=1

piyi = y · p

= |y||p| cosα

= 1 · 1 cosα.

If y lies elsewhere on the plane, we can write y in terms of z, a point that does
lie on the edge of C. Let y = (y − z) + z. Note that (y − z) is perpendicular
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to p. So we have

n∑
i=1

piyi = y · p

= ((y − z) + z) · p
= z · p
= cosα.

Finding the mapping of the stereographic projection of cap C in the plane
y0 = 0 is accomplished using a similar technique, however this time we are
looking for the inverse of the projection. To do this we find the vector resulting
from

t(−1, 0, 0) + (1− t)(0, x1, x2), (12)

which is
(−t, (1− t)x1, (1− t)x2).

The magnitude of this vector must equal one since we are still working on a
unit sphere. Therefore, we set the sum of the squares of the components equal
to one in order to solve for t. The initial step is represented mathematically
by

(−t)2 + ((1− t)x1)2 + ((1− t)x2)3 = 1.

Therefore,

t = 1, t =
−1 + x1

2 + x2
2

1 + x12 + x22
.

Because t = 1 is a trivial case, we will focus on the value t = −1+x12+x22
1+x12+x22

.
Substituting this value in for t in expression 12 and simplifying gives the
vector

(
−1 +

2

1 + x12 + x22
,

2x1
1 + x12 + x22

,
2x2

1 + x12 + x22

)
.

Based on Equation 11, if this vector is dotted with the vector (p0, p1, p2), the
result should be cosα. Rearranging this equation to be equal to zero, the
resulting quadratic equation can then be put into standard form for a circle,
making the center and radius easily identifiable. Therefore,(
−1 +

2

1 + x12 + x22
,

2x1
1 + x12 + x22

,
2x2

1 + x12 + x22

)
· (p0, p1, p2)− cosα = 0
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results in(
x1 −

p1
p0 + cosα

)2

+

(
x2 −

p2
p0 + cosα

)2

=
1− cosα2

(p0 + cosα)2
.

Generalizing this result to higher dimensions, the intersection of the cap C in
the plane y0 = 0 is the sphere S with center (x1, ..., xn) and radius r, where

xi =
pi

p0 + cosα
, 1 ≤ i ≤ n, (13)

and

r =
sinα

p0 + cosα
. (14)

Using this information, we are now able to prove Theorem 6. Working back-
wards, we will then also be able to prove other intermediate theorems and
ultimately the Descartes Circle Theorem.

Proof of the Augmented Euclidean Descartes Theorem. By definition, the spher-
ical curvature-center coordinates of a given spherical cap C are given by the
vector

w+(C) = (cotα,
p0

sinα
,
p1

sinα
, ...,

pn
sinα

).

This definition can be related to the augmented Euclidean curvature-center
coordinate vector w(S ), which is associated with the projected sphere S in
the plane y0 = 0. By Equations 13 and 14 we have

xi
r

=

pi
p0+cosα

sinα
p0+cosα

=
pi

sinα

and

b =
1

r
=
p0 + cosα

sinα
= cotα +

p0
sinα

.
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This results in

b̄ =
(|x|2 − r2)

r

=

p21+p
2
2+...+p

2
n+p

2
0−p20

(p0+cosα)2
− sin2 α

(p0+cosα)2

sinα
p0+cosα

=
1− p20 − sin2 α

(p0 + cosα)2
· p0 + cosα

sinα

=
cos2 α− p20

(p0 + cosα) · sinα

=
(cosα + p0)(cosα− p0)

(p0 + cosα) · sinα
= cotα− p0

sinα
.

Thus, by Definition 7,

w(S) =
(

cotα− p0
sinα

, cotα +
p0

sinα
,
p1

sinα
, ...,

pn
sinα

)
= w+(C)G, (15)

where

G =

 1 1 0
−1 1 0
0 0 In

 .
By Theorem 11, a configuration of n+2 spherical caps C1, ..., Cn+2 on the unit
sphere will project stereographically into a configuration of Euclidean spheres
S1, ..., Sn+2 in the plane y0 = 0. Conversely, all configurations of Euclidean
spheres map to configurations of spherical caps. The mapping takes spherical
Descartes configurations to Euclidean Descartes Configurations. The rows of
w+(Cj) are assembled into the matrix W+ and the corresponding rows of
w(Sj) are entered into the matrix W. Then, by extension of Equation 15,

W = W+G.

Applying this result to Theorem 7 gives

WTQnW = GTWT
+QnW+G = GT

 −2 0 0
0 2 0
0 0 2In

G =

 0 −4 0
−4 0 0
0 0 2In

 .
This result proves Theorem 6, the Augmented Euclidean Descartes Theorem.
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Therefore, if W is an augmented matrix of an oriented Descartes configuration
of n+ 2 spheres then Equation 4 is satisfied.

Proof of the Euclidean Generalized Descartes Theorem. Originally, matrix W
was constructed by augmenting matrix M by adding another column. If we
remove that column and focus on matrix M again, we can see that the calcu-
lation of MTQnM amounts to deleting the first row and first column of the
matrix WTQnW. Now we have

MTQnM =

[
0 0
0 2In

]
.

This result proves Theorem 4, the Euclidean Generalized Descartes Theorem.

We can now apply this theorem to the case where n = 2 to prove Theorem 3.

Proof of the Extended Descartes Theorem. Based on the previous proof, if ma-
trix M contains the curvature center coordinates of n+ 2 spheres, then these
spheres form a Descartes configuration. Let n = 2. Then

MTQ2M =

 0 0 0
0 2 0
0 0 2

 .

Therefore, the four oriented circles whose curvature-center coordinates are
contained in M make up a Descartes configuration. We can further restrict
our focus to only consider the first column of matrix M, which contains the
curvatures of the n+ 2 oriented circles.

Proof of the Descartes Circle Theorem. Based on Theorem 3, bTQ2b = 0, as
noted in the (1, 1) entry of MTQ2M. Therefore,

b21 − 2b2b1 − 2b3b1 − 2b4b1 + b22 + b23 + b24 − 2b2b3 − 2b2b4 − 2b3b4 = 0.

Thus,

b21 + b22 + b23 + b24 = 2b2b1 + 2b3b1 + 2b4b1 + 2b2b3 + 2b2b4 + 2b3b4. (16)
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Adding b21 + b22 + b23 + b24 to both sides of Equation 16 results in

2
4∑
j=1

b2j =

(
4∑
j=1

bj

)2

.

Therefore,
4∑
j=1

b2j =
1

2

(
4∑
j=1

bj

)2

.

Using the results from Theorem 3 we can also prove Theorem 2, the Complex
Descartes Theorem.

Proof of the Complex Descartes Theorem. The Complex Descartes Theorem
is true if and only if

4∑
j=1

(bjzj)
2 − 1

2

(
4∑
j=1

bjzj

)2

= 0 (17)

where zj = xj + iyj. For a complex number of the form a + bi to equal 0,
it must be the case that both a = 0 and b = 0. For this reason, the real
and imaginary parts will be addressed separately. First we focus on the real
component of Equation 17. This gives

Re

 4∑
j=1

(bjzj)
2 − 1

2

(
4∑
j=1

bjzj

)2


= b21x
2
1 − 2b1b2x2x1 − 2b1b3x3x1 − 2b1b4x4x1 + b22x

2
2 + b23x

2
3 + b24x

2
4

− 2b2b3x2x3 − 2b2b4x2x4 − 2b3b4x3x4

− (b21y
2
1 − 2b1b2y2y1 − 2b1b3y3y1 − 2b1b4y4y1 + b22y

2
2 + b23y

2
3 + b24y

2
4

− 2b2b3y2y3 − 2b2b4y2y4 − 2b3b4y3y4)

= MTQ2M(2,2) −MTQ2M(3,3).

Based on Theorem 3, both the (2, 2) and (3, 3) entries of MTQ2M equal 2.
Therefore,

Re

 4∑
j=1

(bjzj)
2 − 1

2

(
4∑
j=1

bjzj

)2
 = 0.
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Next, we address the imaginary component. Based on Theorem 3, MTQ2M(2,3) =
0. Therefore,

b21x1y1−b1b2x2y1−b1b3x3y1−b1b4x4y1−b1b2x1y2+b22x2y2−b2b3x3y2−b2b4x4y2
−b1b3x1y3−b2b3x2y3+b23x3y3−b3b4x3y3−b1b4x1y4−b2b4x2y4−b3b4x3y4+b24x4y4 = 0.

This implies that

ib21x1y1 − ib2b1x2y1 − ib3b1x3y1 − ib4b1x4y1 − ib2b1x1y2 − ib3b1x1y3
− ib4b1x1y4 + ib22x2y2 − ib2b3x3y2 − ib2b4x4y2 − ib2b3x2y3 + ib23x3y3

− ib3b4x4y3 − ib2b4x2y4 − ib3b4x3y4 + ib24x4y4 = 0.

Thus,

Im

 4∑
j=1

(bjzj)
2 − 1

2

(
4∑
j=1

bjzj

)2


= ib21x1y1 − ib2b1x2y1 − ib3b1x3y1 − ib4b1x4y1 − ib2b1x1y2 − ib3b1x1y3
− ib4b1x1y4 + ib22x2y2 − ib2b3x3y2 − ib2b4x4y2 − ib2b3x2y3 + ib23x3y3

− ib3b4x4y3 − ib2b4x2y4 − ib3b4x3y4 + ib24x4y4 = 0.

Therefore, both the real and imaginary parts of Equation 17 are equal to 0.
So it is true that

4∑
j=1

(bjzj)
2 − 1

2

(
4∑
j=1

bjzj

)2

= 0

The Descartes Circle Theorem is simple to state, yet challenging to prove.
By generalizing the theorem to incorporate more information and applying
it to higher dimensions, we were able to employ the tools of linear algebra
and spherical geometry to prove these generalized theorems. Ultimately, these
tools allowed us to also prove the Descartes Circle Theorem. These proofs
provide one interesting example of how years of mathematics from various
fields can be used together to prove what appears to be simple theorem.
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