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1. Introduction

In this project we will prove the main theorem in “Period Three Implies Chaos”

by Tien-Yien Li and James A. Yorke. The paper describes an example of a discrete

dynamical system where a sequence {xn} can be described by iterating a continuous

function F such that xn+1 = F (xn) for all n ∈ N. This sequence can be used to

describe many different real world problems from trends in insect population to

certain types of fluid flow. Li and Yorke use real analysis to describe the exact

behavior of certain functions without approximating anything. What I found after

reading their paper is that in proving the theorem there are many times when they

skip over steps in their logic and ask the reader to figure out the missing steps on

their own. What I will to do is prove, using Real analysis (Math 450), the theorem

below but also expand the areas that Li and Yorke have skipped over and put

more detail in them. I will also provide examples to help explain this theroem’s

applications. First we will state necessary definitions and the main theorem we will

be proving. Next we will prove the main theorem. Then we will talk about the

application of this theorem. Finally we will give the conclusion.

2. Main Theorem

First we must define a few terms that will be used to prove the theorem. Let

J be an interval and let F : J → J . For x ∈ J , let F 0(x) denote x and Fn+1(x)

denote F (Fn(x)) for n ∈ N.
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Definition 1. [LY75]Let n ∈ N. We say that p is a periodic point of period n

if p ∈ J and p = Fn(p) and p 6= F k(p) for 1 ≤ k < n.

Definition 2. [LY75]We say p is periodic or is a periodic point if p is periodic

for some n ≥ 1.

Definition 3. [LY75]We say q is eventually periodic if for some positive integer

m, p = Fm(q) is periodic.

Definition 4. [Rud64]Let {sn} be a sequence of real numbers. Let E be the set

of numbers x ∈ R ∪ {±∞} such that snk
→ x for some subsequence {snk

}. Let

s∗ = supE,

s∗ = inf E.

The numbers s∗ and s∗ are called the upper and lower limits of {sn} respectively;

we use the notation

lim sup
n→∞

sn = s∗,

lim inf
n→∞

sn = s∗.

Notice that for a set {xn} if for all ε > 0 there exist infinitely many xn with

0 ≤ xn < ε, then lim inf(xn) = 0.

Theorem 5. [BS11](Heine-Borel) A subset K of R is compact if and only if K is

closed and bounded.

With this we can state the theorem that we will be proving.

Theorem 6. [LY75]Let J be an interval and let F : J → J be continuous. Assume

there are points a, b, c, d ∈ J for which F (a) = b, F 2(a) = c, and F 3(a) = d and

either (Case 1)

d ≤ a < b < c
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or (Case 2)

d ≥ a > b > c.

Then

T1: for every k ∈ N there exists a periodic point in J with period k.

Furthermore,

T2: there exists an uncountable set S in J (containing no periodic points) which

satisfies the following conditions:

(A) For every p, q ∈ S with p 6= q

(2.1) lim sup
n→∞

|Fn(p)− Fn(q)| > 0

and

(2.2) lim inf
n→∞

|Fn(p)− Fn(q)| = 0.

(B) For every p ∈ S and periodic point q ∈ J

(2.3) lim sup
n→∞

|Fn(p)− Fn(q)| > 0.

Remark. Note that if d = a then F 3(a) = a. Thus a is a periodic point of period

three. So the hypothesis is satisfied by the existence of a periodic point of period

three.

3. Proof of T1

To prove T1 we will first need to give the necessary lemmas.

Lemma 7. Let G : I → R be continuous, where I is an interval. For any compact

interval I1 ⊆ G(I) there is a compact interval Q ⊆ I such that G(Q) = I1.

Proof. Let I1 ⊆ G(I1) and I1 is compact. Then ∃p, q ∈ I such that I1 = [G(p), G(q)].

If p < q, let

r = max{x ∈ [p, q]|G(x) = G(p)}
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and let

s = min{x ∈ [r, q]|G(x) = G(q)}.

Then by the intermediate value theorem G[r, s] = I1. If p > q, let

r = max{x ∈ [q, p]|G(x) = G(q)}

and let

s = min{x ∈ [r, p]|G(x) = G(p)}.

Then by the intermediate value theorem G[r, s] = I1. Therefore there is a compact

interval Q ⊆ I such that G(Q) = I1. �

It is important to note that since G is not necessarily one to one then I1 ⊆ G[p, q]

and perhaps not G[p, q] ⊆ I1.

Lemma 8. Let F : J → J be continuous and let {In}∞n=0 be a sequence of compact

intervals with In ⊆ J and In+1 ⊆ F (In) for all n. Then there is a sequence of

compact intervals Qn such that Qn+1 ⊆ Qn ⊆ I0 and Fn(Qn) = In for n ∈ N.

Define Q =
⋂∞

n=0Qnthen for any x ∈ Q, we have Fn(x) ∈ Fn(Qn) = In for all n.

Proof. Define Q0 such that F 0(Q0) = I0, Q0 = I0. Now by lemma 7, ∃Q1 ⊆ Q0

such that F (Q1) = I1 ⊆ F (I0). Now suppose ∃Qn ⊆ Qn−1 such that Fn(Qn) =

In ⊆ F (In−1). Then, by lemma 7 ∃Qn+1 ⊆ Qn such that Fn+1(Qn+1) = In+1 ⊆

F (In). This completes the induction.

Suppose x ∈ Q =
⋂∞

n=0Qn. This implies that F 0(x) = x ∈ Q0 = I0. Suppose

Fn(x) ∈ In. Then x ∈ Q⇒ x ∈ Qn+1. Since x ∈ Qn+1, Fn+1(x) ∈ Fn+1(Qn+1) =

In+1 . Therefore Fn(x) ∈ In for all n ∈ N. �

Lemma 9. Let G : J → R be continuous. Let I ⊆ J be a compact interval. Assume

I ⊆ G(I). Then there is a point p ∈ I such that G(p) = p.

Proof. Let I = [β0, β1], since I ⊆ G(I) we can choose α0, α1 ∈ I such that G(α0) =

β0 and G(α1) = β1. Then α0, α1 ∈ G(I). Then α0 − G(α0) = α0 − β0 ≥ 0.
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α1−G(α1) = α1−β1 ≤ 0. Thus the intermediate value theorem implies that there

exists a β ∈ I such that β −G(β) = 0. �

Proof of T1. Case 1: Assume d ≤ a < b < c, write K = [a, b] and L = [b, c]. Since

F (a) = b, F 2(a) = c, and F 3(a) = d, the intermediate value theorem implies that

F (K) = F [a, b] ⊇ [F (a), F (b)] = [b, c] = L and F (L) = F [b, c] ⊇ [F (c), F (b)] =

[d, c]. Since L ⊆ [d, c] and K ⊆ [d, c] then L ⊆ F (L) and K ⊆ F (L). Case2:

Assume d ≥ a > b > c, define K = [b, a] and L = [c, b]. Again, since F (a) = b,

F 2(a) = c, and F 3(a) = d the intermediate value theorem implies that F (K) =

F [b, a] ⊇ [F (b), F (a)] = [c, b] = L and F (L) = F [c, b] ⊇ [F (b), F (c)] = [c, d]. Since

L ⊆ [c, d] and K ⊆ [c, d] then L ⊆ F (L) and K ⊆ F (L). So for both case 1 and

case 2 we know that

K ⊆ F (L)

L ⊆ F (L) and

L ⊆ F (K).

Figure 3.1 is an example of what F could look like in case 1.

Let k ∈ N. For k > 1 let {In} be the sequence of intervals In = L for n =

0, . . . , k − 2, and Ik−1 = K, and define In to be periodic inductively by In+k = In

for n ∈ N. If k = 1 let In = L for all n. Recall that in order for Lemma 8 to

apply to the function F : J → J and the sequence of compact intervals {In}∞n=0

then In ⊆ J , and In+1 ⊆ F (In) for all n ∈ N. Since {In} is defined so that either

In = K or In = L for all n, then the only time that In wouldn’t satisfy Lemma 8

would be when In = In+1 = K because this requires that K ⊆ F (K) which is not

necessarily true. In other words whenever we have two intervals equal to K then

we have an interval equal to L between them or it will not be sufficient to satisfy

Lemma 8.

Let Qn be a sequence of compact intervals defined as in Lemma 8; therefore

Qn+1 ⊆ Qn and Fn(Qn) = In for all n ∈ N. Notice that Qk ⊆ Qo = L and by our
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Figure 1  Example graph of F 
Figure 3.1. Plot F under the condition of case 1.

definition of In, F k(Qk) = Ik = L = Q0 ⊇ Qk. Then by Lemma 9,Qk ⊆ F k(Qk)

and so with G = F k and we see that G has a fixed point pk in Qk.

Now suppose pk has period n0 ∈ {0, · · · , k− 1} or in other words Fn0(pk) = pk.

We know that F k−1(pk) ∈ Ik−1 = K. Now, Fm(pk) ∈ Im = L for m < k− 1. Since
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k − 1− n0 < k − 1 this implies

F k−1−n0(pk) = F k−1−n0(Fn0(pk))

= F k−1−n0+n0(pk)

= F k−1(pk)

⇒ F k−1(pk) ∈ L and F k−1(pk) ∈ K ⇒ F k−1‘(pk) ∈ L ∩ K ⇒ F k−1(pk) = b.

But F k+1(pk) ∈ L and F k+1(pk) = F 2(F k−1(pk)) = F 2(b) = d. But d /∈ L a

contradiction. Therefore pk has period k. �

4. Proof of T2

(Proof of T2). LetM be the set of sequences M = {Mn}∞n=1 of intervals satisfying

conditions

(4.1) Mn = K or Mn ⊆ L and, Mn+1 ⊆ F (Mn)

and if Mn = K then

(4.2) n is the square of an integer and Mn+1,Mn+2 ⊆ L.

For case 1, K = [a, b] and L = [b, c]. For case 2, K = [b, a] and L = [c, b]. As was

proven earlier for both cases we have K ⊆ F (L), L ⊆ F (L), and L ⊆ F (K). For

M ∈M, let P (M,n) denote the number of i’s in {1, . . . , n} for which Mi = K. For

each r ∈ (3/4, 1) choose Mr = {Mr
n}∞n=1 to be a sequence inM such that

(4.3) lim
n→∞

P (Mr, n2)/n = r.

To help understand how we can choose what Mr is, lets give an example of the

case r = 4/5. First let every interval of Mr
n where n is the square of an integer be

equal to K except for every fifth square of an integer. Otherwise let Mr
n = L. So
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the first 36 terms of Mr
n looks like

Mr
n = {K,L,L,

K,L, L, L, L,

K,L, L, L, L, L, L,

K,L, L, L, L, L, L, L, L,

L, L, L, L, L, L, L, L, L, L, L,

K,L, . . .}.

Notice that the 25th term in the sequence is equal to L. It should be easy to see

that this example satisfies 4.3. Other examples of Mr
n where r is rational can be

found in a similar way. For irrational values of r such as π/4 first we choose enough

squares to be K such that the tens digit of r is satisfied 4.3. Then we choose

enough of the K squares so that for the hundreds digit of r 4.3 is satisfied. Repeat

this for every digit of r to get an example of Mr
n that satisfies 4.3. For example

π/4 ≈ 0.7853981634 . . .. So seven out of the first ten are K, then 78 out of the first

100 are K, then 785 out of the first 1000, and so on.

Notice that the number of i’s in {1, . . . , n2} for which i is the square of an integer

is n. So this implies that P (Mr, n2) ≤ n for all n. Thus P (Mr, n2)/n ≤ 1 for all

n. So the choice that r < 1 makes sense. The reason we choose r > 3/4 will be

made clear later in the proof. For now it is sufficient to say that since r > 0 then

4.3 implies that there are an infinite number of K’s in Mr because otherwise the

limit in 4.3 would be equal to zero.

LetM0 = {Mr : r ∈ (3/4, 1)} ⊆M . Suppose r1, r2 ∈ (3/4, 1) such that r1 6= r2.

Then Mr1 6= Mr2 . This means that there are as many possible Mr as there are r

values or for every unique value of r there a corresponding Mr. Now since (3/4, 1)

is an uncountable set then the set of possible values of r is uncountable then M0

is uncountable. For each Mr ∈ M0, by Lemma 8, there exists a point xr with

Fn(xr) ∈Mr
n for all n. Let S = {xr : r ∈ (3/4, 1)}. For xr ∈ S, let P (xr, n) denote
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the number of i’s in {1, . . . , n} for which F i(xr) ∈ K. Suppose F k(xr) = b. Then

F k+2(xr) = d, but F k+2(xr) ∈Mr
k+2 ⊆ (L∪K). In order for this to be true a = d.

Thus

F k+3(xr) = F (F k+2(xr))

= F (a)

= b

= F k(xr)

so xr would eventually have period three and F k+2(xr) = a. Since a ∈ K, a /∈ L,

and F k+2(xr) ∈ Mr
k+2 then F k+2(xr) ∈ K. Then 4.2 implies that F k+3(xr) ∈ L,

F k+4(xr) ∈ L, and

F k+3m+2(xr) = F 3m(F k+2(xr))

= F 3m(a)

= a /∈ L.

But since the values where Mr can be K are non periodic then it follows that for

some values of m Mr
k+3m+2 6= K a contradiction since a ∈ K. So F k(xr) 6= b

for any xr ∈ S then either xr ∈ K or xr ∈ L but not both. Since F (xr) 6= b,

r1 6= r2 ⇒ xr1 6= xr2 . Therefore S is uncountable and P (xr, n) = P (Mr, n) for all

n. Define ρ to be

ρ(xr) = lim
n→∞

P (xr, n
2)/n = r

for all r. Now 4.1 implies that Mr
n = K or Mr

n ⊆ L for all n. We claim that

for p, q ∈ S with p 6= q, there exist infinitely many n’s such that Fn(p) ∈ K and

Fn(q) ∈ L or vice versa. Without loss of generality assume ρ(p) > ρ(q). Then

limn→∞ P (p, n2)/n > limn→∞ P (q, n2)/n. Therefore

lim
n→∞

P (p, n2)− P (q, n2)
n

> 0.
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Since the denominator of this expression approaches infinity then the numerator

must approach infinity as well. But since the function P only increases by a value of

+1 or 0 for every increment n and the only time P (p, n2) increases while P (q, n2)

remains the same is when Fn2

(p) ∈ K and Fn2

(q) ∈ L. Then there must be

infinitely many n’s such that Fn(p) ∈ K and Fn(q) ∈ L.

For case 1, K = [a, b] and L = [b, c]. Since F 2(a) = c and F 2(b) = d ≤ a and

F 2 is continuous, there exists a δ > 0 such that F 2(x) − F 2(b) < (b − d)/2 for all

x ∈ [b− δ, b] ⊂ K. This implies F 2(x) > (b+ d)/2 for all x ∈ [b− δ, b]. If p ∈ S and

Fn(p) ∈ K, then 4.2 implies Fn+1(p) ∈ L and Fn+2(p) ∈ L. Therefore F 2(Fn(p)) ∈

L. Suppose Fn(p) ∈ [b − δ, b] then F 2(Fn(p)) < (b + d)/2; a contradiction since

d < b and so (b+ d)/2 < b. Therefore Fn(p) /∈ [b− δ, b]. Since Fn(q) ∈ L, then

Fn(p) < b− δ < b < Fn(q).

Therefore

|Fn(p)− Fn(q)| = Fn(q)− Fn(p)

> b− (b− δ)

= δ.

For case 2 K = [b, a] and L = [c, b], since F 2(a) = c and F 2(b) = d ≥ a and

F 2 is continuous, there exists a δ > 0 such that F 2(b) − F 2(x) > (d − b)/2 for all

x ∈ [b, b+ δ] ⊂ K. This implies F 2(x) < (b+ d)/2 for all x ∈ [b, b+ δ]. If p ∈ S and

Fn(p) ∈ K, then 4.2 implies Fn+1(p) ∈ L and Fn+2(p) ∈ L. Therefore F 2(Fn(p)) ∈

L. Suppose Fn(p) ∈ [b, b + δ] then F 2(Fn(p)) < (b + d)/2 a contradiction since

b < d and so b < (b+ d)/2. Therefore Fn(p) /∈ [b, b+ δ]. Since Fn(q) ∈ L, then

Fn(q) < b < b+ δ < Fn(p).
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Therefore

|Fn(p)− Fn(q)| = Fn(p)− Fn(q)

> (b+ δ)− b

= δ.

So for both case 1 and case 2, |Fn(p)− Fn(q)| > δ for the infinitely many cases

where Fn(p) ∈ K and Fn(q) ∈ L. Thus the set

{|F k(p)− F k(q)| : ∀k ∈ N and F k(p) ∈ K and F k(q) ∈ L}

is an infinite set and all values in the set are greater than δ. Therefore by definition

4

lim sup
n→∞

|Fn(p)− Fn(q)| > 0.

We will now prove 2.3 since the proof is similar to the proof of 2.1. Now assume

p ∈ S and let q be a periodic point in J with period k. As was shown in the proof

of 2.1 when Fn(p) ∈ K then there exists a δ > 0 such that for case 1 Fn(p) < b− δ

and for case 2 Fn(p) > b + δ. Let In be as defined in the proof of T1 such that

Fn(q) ∈ In for all n ∈ N. Now, In = K only when n = jk − 1 where j ∈ N. Since

the set of perfect squares is non periodic then the set of n’s where Fn(p) ∈ K and

Fn(q) ∈ L is infinite. Thus the set

{|F k(p)− F k(q)| : ∀k ∈ N and F k(p) ∈ K and F k(q) ∈ L}

is an infinite set and all values in the set are greater than δ. Therefore by definition

4

lim sup
n→∞

|Fn(p)− Fn(q)| > 0.

We now prove 2.2. To prove 2.2 we must first modify our definition ofMr
n. First,

assume case 1, so that F (b) = c and F (c) = d ≤ a < b. We can choose the set of

intervals [bn, cn], n = 0, 1, 2, . . . such that b = b0 and c = c0. since F [b0, c0] ⊇ [d, c]

then by the intermediate value theorem ∃b1 ∈ [b0, c0] such that F (b1) = b0. Since
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F [b1, c0] ⊇ [d, c0] 3 b0 then by the intermediate value theorem that ∃c1 ∈ [b1, c0]

such that F (c1) = b0. Then it follows by similair arguments that we can choose bn

and cn inductively such that

bn+1 = max{x ∈ [bn, cn]|F (x) = cn}

and

cn+1 = min{x ∈ [bn+1, cn]|F (x) = bn}.

This implies that [b, c] = [b0, co] ⊇ [b1, c1] ⊇ [b2, c2] ⊇ · · · ⊇ [bn, cn] ⊇ · · · , and

F (x) ∈ (bn, cn) for all x ∈ (bn+1, cn+1), and F (bn+1) = cn, F (cn+1) = bn. Now,

because the definition of bn and cn are very similar for case 2 we will omit it in

order to prevent confusion. Since bn < cn for all n and since bn is increasing then

the limits b∗ = lim bn and c∗ = lim cn exist.

Now, in addition to 4.1 and 4.2 we assume that if Mk = K for both k = n2 and

k = (n + 1)2 then Mk = [b2n−(2j−1), b
∗] for k = n2 + (2j − 1), Mk = [c∗, c2n−2j ]

for k = n2 + 2j where j = 1, · · · , n. For all other values of k we assume Mk = L.

What this means is that ifMk = K for both k = n2 and k = (n+1)2 then for every

value of k between n2 and (n+ 1)2, Mk are set to the intervals given previously.

Now we check if these conditions are consistent with 4.1 and 4.2. Since bn, b∗, cn, c∗ ∈

L then [bn, b
∗] ⊆ L and [c∗, cn] ⊆ L for all n ∈ N. Let Mk = K for both k = n2

and k = (n+1)2. Then Mn2+1 = [b2n−1, b
∗] and Mn2+2 = [c∗, c2n−2]. Since n2 and

(n+ 1)2 are both squares of integers then condition 4.2 is satisfied. Now, we know

that Mn2+2n = [c∗, c0]. For 4.1 to be satisfied then F (Mk) ⊇ Mk+1 for all k ∈ N.

To show this is true first
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F (Mk2) = F (K)

⊇ L

⊇ [b2k−1, b
∗] since bk, b∗ ∈ L

= Mk2+1. by definition of M

Next,

F (Mk2+2j−1) = F [b2k−(2j−1), b
∗]

⊇ [F (b∗), F (b2k−2j+1)] since both F (b2k−(2j−1)), F (b∗) ∈ F [b2k−(2j−1), b∗]

= [c∗, c2k−2j ] by our choice of c∗and ck

= Mk2+2j .

And

F (Mk2+2j) = F [c∗, c2k−2j ]

⊇ [F (c2k−2j), F (c
∗)] since both F (c2k−2j), F (c∗) ∈ F [bc2k−2j , c∗]

= [b2k−2j−1, b
∗] by our choice of b∗and bk

= Mk2+2j+1.

Finally

F (M(k+1)2−1) = F (Mk2+2k)

= F [c∗, c0]

⊇ [F (c0), F (c
∗)]

= [d, b∗]

⊇ K

= M(k+1)2 .
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Therefore the new conditions are compatible with 4.1. Since the new conditions

do not affect the number of i’s in {1, . . . , n} for which Mi = K then for each

r ∈ (3/4, 1) we can choose Mr = {Mr
n}∞n=1 to be a sequence inM such that

lim
n→∞

P (Mr, n2)/n = r.

Therefore conditions 4.1, 4.2, and 4.3 are satisfied by our new conditions.

Let r, r∗ ∈ (3/4, 1) where r 6= r∗. Choose Mr,Mr∗ ∈M such that

lim
n→∞

P (Mr, n2)/n = r

and

lim
n→∞

P (Mr∗ , n2)/n = r∗.

Let the set B = {Bn} be defined so that Bk = 1 if and only if Mr
k2 = K, Bk = 0

otherwise. Likewise let the set B∗ = {B∗n} be defined so that B∗k = 1 if and only if

Mr∗

k2 = K, B∗k = 0 otherwise. Then by 4.3 and the definition of Mr

r = lim
n→∞

((
n∑

m=1

Bm

)
/n

)

and

r∗ = lim
n→∞

((
n∑

m=1

B∗m

)
/n

)
.

Now define {Zn} such that Zk = a if and only if Bk = B∗k = 0, Zk = b if and

only if Bk = 0 and B∗k = 1, Zk = c if and only if Bk = 1 and B∗k = 0, and

Zk = d if and only if Bk = B∗k = 1. Note that Zk = Zk+1 = d if and only if

Bk = Bk+1 = B∗k = B∗k+1 = 1. Now since r > 3/4 then Zk ∈ {c, d} more than

three fourths of the time. This implies that Zk = b less than one fourth of the time.

since r∗ > 3/4 then Zk ∈ {b, d} more than three fourths of the time. This implies

that Zk = c less than one fourth of the time. Suppose that Zk = d less than or

equal to one half of the time. This implies that Zk = c more than one fourth of

the time a contradiction. Therefore Zk = d more than one half of the time. Now

suppose that if Zk = d then Zk 6= d. This implies that for every time Zk = d then
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there is at least one time where Zk 6= d. Then Zk = d for less than or equal to

half the time a contradiction. This implies that Zk = Zk+1 = d happens infinitely

many times, which implies that Bk = Bk+1 = B∗k = B∗k+1 = 1 happens infinitely

many times.

Therefore there exist infinitely many n such that Mr
k = Mr∗

k = K for both

k = n2 and k = (n + 1)2. Let xr ∈ S and xr∗ ∈ S. Since lim(bn) = b∗ and

lim(cn) = c∗, for any ε > 0 there exists N with |bn − b∗| < ε, |cn − c∗| < ε for all

n > N . Then, for any n with n > N and Mr
k = Mr∗

k = K for both k = n2 and

(n+ 1)2, we have

Fn2+1(xr) ∈Mr
k = [b2n−1, b

∗]

with k = n2 + 1 and Fn2+1(xr) and Fn2+1(xr∗) both belong to [b2n−1, b
∗]. There-

fore, |Fn2+1(xr)− Fn2+1(xr∗)| < ε. And so by definition

lim inf
n→∞

|Fn(p)− Fn(q)| = 0.

�

5. application of the theorem

The most commonly used example to demonstrate the behavior described by the

theorem is the logistic equation

F (x) = ρx(1− x)

where F : [0, 1] → [0, 1] and ρ > 0. In order to apply this theorem we will choose

ρ = 4. First let’s check and see if the example satisfies the hypothesis. Figure 5.1

shows the plots of x, F (x), F 2(x), and F 3(x) versus x. In order for us to be able

to apply the theorem there must exist a point a ∈ [0, 1] such that F 3(a) ≤ a <

F (a) < F 2(a). From Figure 5.1 we can see that the points in the neighborhood

of 0.15 will satisfy the hypothesis. If we solve for F 3(x) = 0 we find that the root

that is closest to 0.15 is (2−
√
2)/4 ≈ 0.146466094. Now, let a = (2−

√
2)/4, then

b = F (a) = 1/2, c = F 2(a) = 1, and d = F 3(a) = 0. So d < a < b < c which
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Figure 5.1. The blue plot is of x vs. x. The red plot is of F (x)
vs. x. The yellow plot is of F 2(x) vs. x. The green plot is of F 3(x)
vs. x.

Figure 5.2. The blue plot is of xn vs. n where x0 = 0.4. The red
plot is of ynvs. n where y0 = 0.405

satisfies our hypothesis. Figure 5.2 plots the sequences {xn} and {yn} vs. n where

xn+1 = F (xn) and x0 = 0.4 also yn+1 = F (yn) and y0 = 0.405 for 50 iterations.

We can see from Figure 5.2 that for about the first ten iterations the two plots
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remain very close together. Then after the tenth iteration the two plots start to

diverge. For about 15 iterations, the plot’s values, while all of them are still within

J , the distance between these values is quite different. Then quite abruptly the

plots seem to converge around the 24th iteration and for about seven iterations the

two plots appear to be almost identical. Finally they diverge once more at around

the 32nd iteration. Neither of these plots show any sign of being periodic or even

show signs of being asymptotically periodic. Both plots show a general lack of a

discernible pattern. It is important to note that this plot is only an approximation

and we cannot attest to the accuracy of the values for larger and larger n. We can

only say that this is similar to the behavior we would see if x0 and y0 exist in the

set S from the proof of T2.

The lim sup in Statement 2.1 states that for any two initial conditions in S

then no matter how many iterations we do the difference between the respective

sequences for certain iterations will never approach zero. Statement 2.2 implies that

for other iterations these sequences get very close to each other. Finally 2.3 implies

that for any initial condition in S then for certain iterations the corresponding

sequence will never be close to any periodic point of F . This implies that none of

the initial conditions in S will even be asymptotically periodic to any of the periodic

points given by T1.
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