Isolation and Characterization of Degradation Products of Amiodarone HCl Associated with Microcrystalline Cellulose
Craig Carrell, PharmD candidate
Marcelo Nieto, PhD
Timothy McPherson, PhD

BACKGROUND
- Amiodarone HCl is a common anti-arrhythmic drug dating to the 1960's.
- Dosage forms for amiodarone are not readily available for pediatrics.
- Challenges come from stability of drugs when compounding, directly related to excipients.
- Previous study evaluated 3 common excipients: mannitol, lactose, and microcrystalline cellulose.
- They identified an unknown degradation of amiodarone when paired with cellulose.

OBJECTIVE
- Isolate and characterize the unknown degradation product from the reaction of amiodarone and cellulose.

METHODS
- A forced degradation study (labeled t=120) was prepared using amiodarone HCl with each of the following excipients: microcrystalline cellulose, mannitol USP powder, and lactose monohydrate.
 - These powder mixtures were allowed to incubate in an oven for several months to determine if degradation would occur.
 - High performance liquid chromatography with mass spectroscopy (LCMS) was used to identify presence of degradation product and to aid characterization.
 - Control samples (t0) were compared to forced degradation samples.
 - To analyze the chemical structure, nuclear magnetic resonance (NMR) proton (1H) and carbon (13C) was used.
 - A pH evaluation was also conducted of the excipients and amiodarone.

RESULTS

Results (Chromatography and NMR):
- Two degradation products were found with amiodarone and microcrystalline cellulose with LCMS.
- Molecular weights were used to identify the two products.
 - Named Product 1 and Product 2.
 - NMR analysis showed consistency with molecular formulas (see Figure 1).
- Product 1 is the predominant degradation product and is an O-dealkylation of the ether group.
- Product 2 is an N-dealkylation of one of the ethyl groups which was not isolated in pure form and is currently working to purify to finalize the characterization.
 - The peaks of the products can be seen in Figure 2.

Results (Amounts Detected and pH evaluation):
- Forced degradation (t=120) study vs control (t0) showed:
 - Only amiodarone + microcrystalline cellulose had Product 1 in large amounts (Figure 3, peak at 3.5 minute).
 - No t0 sample contained any degradation.
 - Quantifiable detected degradation differences between t=120 samples is 19.38% form microcrystalline cellulose, 0.33% and -3.93% (lactose and mannitol respectively).
- pH of the samples acidified over time in thermal conditions.
 - The pH of the samples did not contribute to formation of any degradation product.

CONCLUSION
- Amiodarone HCl coupled with microcrystalline cellulose showed a predominant degradation of Product 1, an O-dealkylation of the ether group.
- Further evaluation of amiodarone compounded formulations should be explored.
- Product 2 needs further work up to fully characterized.

References