Math 125 Review Packet for the Common Final

Remarks:

- The final will not be identical to the questions in this packet.
- The final will be in the same format as this packet, but not as long.
- The use of any calculator, smart phone or other transmitting devices such as a smart watch is prohibited for the final.
- 1. Circle the correct answer: T (True) or F (False)

(a) T or F:
$$\frac{x}{x^2 + 3} + \frac{7}{6x - 1}$$
 is simplified to $\frac{x + 7}{x^2 + 6x + 2}$.

(b) T or F:
$$\frac{x}{x^2+3}$$
 is simplified to $\frac{1}{x+3}$

- (c) T or F: If x(x+1) > 0, then x and x+1 are either both positive or both negative.
- (d) T or F: $f^{-1}(f(x)) = x$ for every x in the domain of f.
- (e) **T** or **F**: $\pi = 180$
- (f) T or F: The angle $\frac{2\pi}{3}$ is coterminal the angle $\frac{\pi}{3}$.
- (g) T or F: $\sin^{-1} x = \csc x$
- (h) T or F: $\sin t \cos t > 0$ in the second quadrant.
- (i) T or F: $\cos \frac{9\pi}{10} > 0$
- (j) T or F: $tan(-\theta) = -tan \theta$
- (k) T or F: $\sin(\theta + 2\pi) = \sin \theta$
- (1) T or F: The period of $f(x) = \tan x$ is 2π

(m) T or F:
$$\sin^{-1} \left(\sin \frac{5\pi}{6} \right) = \frac{\pi}{6}$$

(n) T or F: The amplitude of the graph of $y = -3\sin\left(\frac{x}{2}\right)$ is -3.

(o) T or F:
$$\sec \theta = \csc \left(\frac{\pi}{2} - \theta \right)$$

(p) T or F: In triangle
$$ABC$$
, $\frac{\sin A}{a} = \frac{\cos B}{b} = \frac{\tan C}{c}$

- (q) T or F: In triangle ABC, $a^2 = b^2 + c^2 2bc \cos A$
- (r) T or F: The domain of the function $f(x) = e^x$ is all real numbers.
- (s) **T** or **F**: The graph of the function $f(x) = \left(\frac{1}{3}\right)^x$ goes through the point (1,0).
- (t) T or F: $\log(A+B) = \log A + \log B$, with A > 0 and B > 0

- 2. Fill in the blank.
- (a) The graph of f^{-1} is obtained by reflecting the graph of f in the line
- (b) The radian measure of the angle -330° is _____.
- (c) The degree measure of the angle $\frac{11\pi}{3}$ is _____.
- (d) Find the radius of the circle if an arc of length 6 meters on the circle subtends a central angle of 135°:_____
- (e) For the graph of the function $f(x) = 5\sin(3x + \pi)$, the amplitude is _____, the period is and the phase shift is _____.
- (f) For the question (g), use the figure below to state the trigonometric ratios.

$$\sin \theta = \underline{\qquad} \qquad \cos \theta = \underline{\qquad}$$

$$\cos \theta =$$

$$\tan \theta =$$

$$\csc \theta =$$

$$\sec \theta =$$

$$\cot \theta =$$

- (g) Find the exact value: $\sin \frac{2\pi}{3} =$
- (h) Find the exact value: $\cos \frac{2\pi}{3} =$
- (i) Find the exact value: $\tan \frac{5\pi}{4} =$
- (j) $y = \cos^{-1} x \Leftrightarrow x = \cos y$ for $\leq x \leq 1$ and $\leq y \leq 1$.
- (k) Find the exact value: $\sin^{-1}\left(-\frac{\sqrt{2}}{2}\right) =$
- (1) Find the exact value: $\cos^{-1}\left(-\frac{\sqrt{2}}{2}\right) =$

- (m) Find the exact value: $\cos^{-1}\left(\cos\frac{5\pi}{6}\right) =$ _____
- (n) Find the exact value: $\tan^{-1} \left(\tan \frac{5\pi}{6} \right) =$
- (o) Find the exact value: $\cos\left(\sin^{-1}\frac{3}{5}\right) = \underline{\hspace{1cm}}$
- (p) State the reciprocal identity: $\cot x =$
- (q) State the quotient identity: $\cot x =$
- (r) State the Pythagorean identity: $\sec^2 x =$
- (s) State the addition formula: $\sin(x+y) =$
- (t) State the subtraction formula: $\cos(x-y) =$
- (u) State the three variations of the double-angle identity for cosine:

 $\cos 2x =$

- (v) State the half-angle formula: $\sin \frac{x}{2} =$
- (w) Find all solutions of the equation $\tan x = \sqrt{3}$: x =
- (x) The graph of the function $f(x) = e^x 2$ has a horizontal asymptote and it is _____.
- (y) Express the equation $log_3 8 = x$ in exponential form:
- (z) The inverse of $f(x) = e^x$ is $f^{-1}(x) = \underline{\hspace{1cm}}$.
- (aa) $\log_a a^x =$ for a > 0, $a \ne 1$ and $x \in \Re$
- (bb) $a^{\log_a x} =$ ______ for a > 0, $a \ne 1$ and x > 0

- (cc) Find the exact value: ln1 =
- Find the exact value: log 10 =
- (ee) Find the exact value: $\log_2 160 \log_2 5 =$
- (ff) Find the exact value: $\ln e^7 =$
- Expand: $\log\left(\frac{x^2y}{\sqrt{x+1}}\right) =$ (gg)
- Condense: $\ln(x+y) + \ln(x-y) 3\ln x =$ (hh)
- 3. Perform the indicated operations and simplify.

(a)
$$\frac{1}{x-1} + \frac{x}{(x-1)^2}$$

(b)
$$\frac{x^2 + 2x - 3}{x^2 + 8x + 16} \cdot \frac{x^2 + 4x}{x^2 - 1}$$

4. Solve the equation.

(a)
$$2x^3 - 3x^2 - 8x + 12 = 0$$

(b)
$$|2x+3|=9$$

(c)
$$\sin x - 2\sin^2 x = 0$$

(d)
$$\sin x = \cos 2x$$

(e)
$$2^{3x-5} = 7$$

(f)
$$\log_2(1-x) = 4$$

(g)
$$3^{2x} - 3^x - 6 = 0$$

4. Solve the equation.
(a)
$$2x^3 - 3x^2 - 8x + 12 = 0$$
 (b) $|2x + 3| = 9$ (c) $\sin x - 2\sin^2 x = 0$
(d) $\sin x = \cos 2x$ (e) $2^{3x-5} = 7$ (f) $\log_2(1-x) = 4$
(g) $3^{2x} - 3^x - 6 = 0$ (h) $\log x + \log(x + 1) = \log 12$

5. Solve the inequality.

$$(a) |2x-5| \le 3$$

(b)
$$|3x - 2| > 5$$

6. Find the side labeled x or the angle labeled θ .

(a)
$$x =$$

(b)
$$x =$$

7. Find the amplitude, period and phase shift of the function and graph one complete period.

$$y = 2\sin\left(x - \frac{\pi}{2}\right)$$

8. The graph of one complete period of a sine or cosine curve is given.

- (a) Find the amplitude, period and horizontal shift.
- (b) Write an equation that represents the curve in the form $y = a \sin k(x b)$ or $y = a \cos k(x b)$.
- 9. From the top of a 200-ft lighthouse, the angle of depression to a ship in the ocean is 30°. How far is the ship from the base of the lighthouse?

10. Because of prevailing winds, a tree grew so that it was leaning 5° from the vertical. At a point 40 meters from the tree, the angle of elevation to the top of the tree is 35° . Find the height h of the tree.

11. Two tugboats that are 120 feet apart pull a barge, as shown. If the length of one cable is 210 feet and the length of the other is 230 feet, find the angle formed by the two cables.

- 12. Find $\sin 2x$ and $\cos 2x$ from the given information: $\tan x = -\frac{1}{3}$, x in Quadrant II
- 13. Verify the identity.
- (a) $\cos^2 x \csc x \csc x = -\sin x$
- (b) $\frac{1}{1-\sin^2 x} = 1 + \tan^2 x$
- 14. Sketch the graph of (a) $f(x) = 2^x$ and (b) $g(x) = 2^{-x}$.
- 15. Match the logarithmic function with its graph.

(i)
$$f(x) = \log_3(x-1)$$
 (ii) $f(x) = -\log_3(x+2)$ (iii) $f(x) = \log_3(1-x)$

(iv)
$$f(x) = -\log_3(-x)$$

