JUSTIN OKOSI

THE EFFECTS OF PRESERVATION METHODS ON THE PROPERTIES OF BONE AND SOFT TISSUE

APRIL 13, 2012
INTRODUCTION

I. History
II. Significance
III. Relation to Anthropology
OBJECTIVES

I. To test and determine if any preservation method used has effects on the specimen which they are treated with.

I. Strain [http://www.uwgb.edu/dutchs/structge/stress.htm]

II. Youngs Modulus [http://www.wisegeek.com/what-is-youngs-modulus.htm]

III. Hardness

IV. Discoloration

V. Thickness

Hypothesis: Preservation methods have effects on mechanical properties
METHODS

I. Samples:
 4 Cat humeri and 4 Chicken humeri

II. Materials:
 Strain Gage
 Vishay P-3500 Strain Indicator
 Instron Rockwell Hardness Tester
 Color Chart
 Needle
 Weights
METHODS: MATERIALS

Strain Indicator

Weights

Strain Gage

Hardness Tester
DATA COLLECTION

- Location:
 - Engineering Building
 - Student Success Center
 - Garage
DATA COLLECTION

Removal of Soft Tissue

Soft Tissue Storage
DATA COLLECTION

Prep of Strain Gage

Attachment of Strain Gage
DATA COLLECTION

Whole Cat

Cat with Legs removed
RESULTS

Control

Frozen chicken

mass (g)

0
-150 -100 -50 0 50

Strain

Bone 1
Bone 2
Bone 3
Bone 4
Average Control

mass (g)

0
-15 -10 -5 0

Strain

Bone 1
Bone 2
Bone 3
Bone 4
Average Frozen

Bone 1
Bone 2
Bone 3
Bone 4
Average Control
RESULTS: YOUNG MODULUS

YM = Stress/Strain
Ex: $50/-3.5 = -14.28$
RESULTS: YOUNG MODULUS

YM = stress/strain
Ex: 50/-1.25 = -40
RESULTS: STRAIN

Ave Formalin Cat Strain

- Mass (g)
- Strain (Pa)

Formalin Cat Frozen Strain

- Mass (g)
- Strain (Pa)
RESULT: CAT YOUNG MODULUS

YM = Stress/Strain
Ex: 50/-2 = -25

Formalin/Frozen YM

Formalin YM
RESULT: SOFT TISSUE

<table>
<thead>
<tr>
<th>S1</th>
<th>S2</th>
<th>S3</th>
<th>S4</th>
<th>Ave</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5in</td>
<td>0.4in</td>
<td>0.4in</td>
<td>0.4in</td>
<td>0.425in</td>
</tr>
<tr>
<td>S1 Frozen</td>
<td>S2 Frozen</td>
<td>S3 Frozen</td>
<td>S4 Frozen</td>
<td></td>
</tr>
<tr>
<td>0.6in</td>
<td>0.5in</td>
<td>0.5in</td>
<td>0.5in</td>
<td>0.525in</td>
</tr>
<tr>
<td>S1 Thawed</td>
<td>S2 Thawed</td>
<td>S3 Thawed</td>
<td>S4 Thawed</td>
<td></td>
</tr>
<tr>
<td>0.5in</td>
<td>0.4in</td>
<td>0.4in</td>
<td>0.4in</td>
<td>0.425in</td>
</tr>
</tbody>
</table>
REFERENCES

- Blauth, Michael., Unger, Stefan., Werner, Schmoelz

- Caroline Ohman
 2008 The effects of embalming using a 4% formalin solution on the compressive mechanical properties of human cortical bone. *Clinical biomechanics* 23(10): 1294-1298

- Fessel, Gion., Frey, Kevin., Schweizer, Andreas., Calcagni, Maurizio., Ullrich, Oliver., Snedeker G. Jess

- Forrilo, Francisco., Moreno, Jose.

- Juang R, Cook P, Blyth P.

 2009 Effects of tissue preservation on murine bone mechanical properties. *Journal of Biomechanics*: 42: (82-86)

- Suazo, G.I.C; Cantin, L.M; Zavando, M.D.A

- Van der Veen, AJ.

- Wilke, J Hans., Werner K., Haussler K., Reinehr M., Bocker, M Tobias. 10
 2011 Thiel fixation preserves the non-linear load-deformation characteristics of spinal motion segments, but increases their flexibility. *Journal of the Mechanical Behavior of Biomedical*
ACKNOWLEDGMENTS

- Dennis Oconnor
- Dr. Keqin Gu
- Dr. Paul Brunkow
- Engineering Students
- Rodney Batts
- Dr. Jennifer Rehg, Dr. Cairo