An Analysis of Sex Ratio Management in Captive Primates

Jason Scott
Sex Allocation Theory

• Natural Selection should favor mothers that produce offspring of the sex that most increases their own fitness
 – Trivers-Willard Effect (Trivers and Willard 1973)
 – Local Resource Competition (LRC) (Clark 1978)

• In most cases a 50:50 sex ratio should be favored by natural selection
The Trivers-Willard Effect

• Females in good condition should favor sons
 – Sons should benefit from good condition of mother

• Females in lesser condition should favor female offspring
 – Less variance in reproductive success
Trivers-Willard Effect in Action

- Demonstrated in humans on the Forbes billionaire list (Cameron and Dalerum 2009)
 - Women in highest economic bracket give birth to more sons
 - Significantly different from general population

The Romney Effect?
Local Resource Competition (LRC)

• Natural selection will favor the production of the dispersing sex if the non-dispersing sex is likely to engage in competition with relatives
• Males are the dispersing sex in most primate species
Evidence for LRC

• Clark (1978) found evidence for this hypothesis in the brown greater galago
 – Exhibited a male-biased sex ratio at birth
 – Adult females antagonistic towards unrelated young females
Why is this important?

• Potentially useful for captive breeding programs
 – Could allow zookeepers to avoid the inadvertent skewing of sex ratios
 – Could allow for the intentional manipulation of sex ratios
Why is this important?

• Excess males already posing problems for zoos (Faust and Thompson 2000)
 – Propensity to form bachelor groups complicated by space restrictions

• Others Complications:
 – Unstable age structures
 – Reduction in reproductive potential
Question of Interest

• Do management practices/decisions seem to play a major role in shaping the sex ratio of captive primates?

• Expectation:
 – 50:50 sex ratio for monogamous species
 – Female-biased for polygynous species
What I did

- Collected the species holding records of every primate species in the ISIS database

- Compared the sex ratios of primate species in captivity to published birth sex ratios and to predictions of sex allocation theory
Methods

• 25 species of primates
• Collected information for each species
 – Sex ratio of species in captivity
 – Published records of sex ratio at birth
 – Dispersing Sex
 – Social System
Results

• 7 species had no bias in actual sex ratio (ASR) or birth sex ratio (BSR)
• Of the 13 species with a biased BSR, 11 were male-biased and two were female-biased
• Of the 13 species with a biased sex ratio in captivity (ASR), 6 were male-biased and 7 were female-biased
Results

- 5 species had a biased birth sex ratio, but no bias in actual sex ratio in captivity

<table>
<thead>
<tr>
<th>Species</th>
<th>Social System</th>
<th>Dispersing Sex</th>
<th>ASR Bias</th>
<th>BSR Bias</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brown capuchin (Cebus apella)</td>
<td>Polygynous</td>
<td>Male</td>
<td>None</td>
<td>Male (P<0.01)</td>
</tr>
<tr>
<td>Golden-headed lion tamarin (Leontopithecus chrysomelas)</td>
<td>Monogamous</td>
<td></td>
<td>None</td>
<td>Male (P<0.05)</td>
</tr>
<tr>
<td>Crab-eating macaque (Macaca fascicularis)</td>
<td>Promiscous</td>
<td>Male</td>
<td>None</td>
<td>Male (P<0.05)</td>
</tr>
<tr>
<td>Lion-tailed macaque (Macaca silenus)</td>
<td>Polygynous</td>
<td>Male</td>
<td>None</td>
<td>Male (P<0.05)</td>
</tr>
<tr>
<td>Emperor tamarin (Saguinus imperator subgrisescens)</td>
<td>Promiscous</td>
<td>Both</td>
<td>None</td>
<td>Male (P<0.01)</td>
</tr>
</tbody>
</table>
Results

- 5 species had a biased sex ratio in captivity, but no bias in birth sex ratio

<table>
<thead>
<tr>
<th>Species</th>
<th>Social System</th>
<th>Dispersing Sex</th>
<th>ASR Bias</th>
<th>BSR Bias</th>
</tr>
</thead>
<tbody>
<tr>
<td>Western gorilla (Gorilla gorilla gorilla)</td>
<td>Polygynous</td>
<td>Female</td>
<td>Female (P<0.05)</td>
<td>None</td>
</tr>
<tr>
<td>Golden lion tamarin (Leontopithecus rosalia)</td>
<td>Monogamous</td>
<td>Male</td>
<td>Male (P<0.001)</td>
<td>None</td>
</tr>
<tr>
<td>Mandrill (Mandrillus sphinx)</td>
<td>Polygynous</td>
<td>Male</td>
<td>Female (P<0.001)</td>
<td>None</td>
</tr>
<tr>
<td>Chimpanzee (Pan troglodytes)</td>
<td>Promiscous</td>
<td>Female</td>
<td>Female (P<0.001)</td>
<td>None</td>
</tr>
<tr>
<td>White-faced saki (Pithecia pithecia)</td>
<td>Monogamous</td>
<td>Male</td>
<td>Male (P<0.05)</td>
<td>None</td>
</tr>
</tbody>
</table>
Results

- 2 species had actual sex ratios that were opposite those reported for birth

<table>
<thead>
<tr>
<th>Species</th>
<th>Social System</th>
<th>Dispersing Sex</th>
<th>ASR Bias</th>
<th>BSR Bias</th>
</tr>
</thead>
<tbody>
<tr>
<td>Japanese macaque (Macaca fuscata)</td>
<td>Promiscous</td>
<td>Male</td>
<td>Female (P<0.001)</td>
<td>Male (P<0.05)</td>
</tr>
<tr>
<td>Common squirrel monkey (Saimiri sciureus)</td>
<td>Polygynous</td>
<td>Both</td>
<td>Female (P<0.001)</td>
<td>Male (P<0.01)</td>
</tr>
</tbody>
</table>
Results

- 6 species had matching biases in birth and actual sex ratios

<table>
<thead>
<tr>
<th>Species</th>
<th>Social System</th>
<th>Dispersing Sex</th>
<th>ASR Bias</th>
<th>BSR Bias</th>
</tr>
</thead>
<tbody>
<tr>
<td>Common marmoset (Callithrix jacchus)</td>
<td>Promiscous</td>
<td>Male</td>
<td>Male (P<0.01)</td>
<td>Male (P<0.01)</td>
</tr>
<tr>
<td>Ring-tailed lemur (Lemur catta)</td>
<td>Polygynous</td>
<td>Male</td>
<td>Male (P<0.001)</td>
<td>Male (P<0.01)</td>
</tr>
<tr>
<td>Rhesus macaque (Macaca mulatta)</td>
<td>Promiscous</td>
<td>Male</td>
<td>Female (P<0.01)</td>
<td>Female (P<0.01)</td>
</tr>
<tr>
<td>Hamadryas baboon (Papio hamadryas)</td>
<td>Polygynous</td>
<td>Male</td>
<td>Female (P<0.001)</td>
<td>Female (P<0.01)</td>
</tr>
<tr>
<td>Cotton-top tamarin (Saguinus oedipus)</td>
<td>Monogamous</td>
<td>Male</td>
<td>Male (P<0.05)</td>
<td>Male (P<0.01)</td>
</tr>
<tr>
<td>Black-and-white ruffed lemur (Varecia variegata)</td>
<td>Promiscous</td>
<td>Male</td>
<td>Male (P<0.01)</td>
<td>Male (P<0.01)</td>
</tr>
</tbody>
</table>
Discussion

• Management decisions seem to affect the sex ratios of many but not all species in captivity

• Sex ratios of some captive primate species do seem to be influenced by the birth sex ratios

• BSRs seem to provide evidence for local resource competition hypothesis
Questions?