§0. Introduction.

Let $A = A(D^n)$ be a polydisc algebra, that is, the algebra of all continuous functions on $\overline{D}^n \subset \mathbb{C}^n$, which are analytic on D^n. We study A from the point of view of the deformation theory of uniform algebras [KJ4]. We show that if the Banach-Mazur distance between A and a Banach algebra B is sufficiently small then B inherits a lot of properties of A; in particular, the spectrum of B has a structure of n dimensional complex analytic manifold.

We begin by recalling some results from [KJ4] and [RR7]. Let A be a uniform algebra. A deformation of A is a new normed algebra obtained by putting on the vector space A a new associative multiplication \times, which for some small positive ε satisfies

\begin{equation}
\| f \times g - fg \| \leq \varepsilon \| f \| \| g \| \quad \text{for all } f, g \text{ in } A.
\end{equation}
If \(\varepsilon < 1 \) and this new algebra is renormed with its spectral norm, we then obtain a new uniform algebra, \(A_\times \) [KJ4]. If \(Id \) is the identity map from \(A \) into \(A_\times \), then

\[
\| Id \| \| Id^{-1} \| \leq \frac{1 + \varepsilon}{1 - \varepsilon} \rightarrow 1 \text{ as } \varepsilon \rightarrow 0,
\]

so the Banach-Mazur distance between \(A \) and \(A_\times \) tends to 1 with \(\varepsilon \rightarrow 0 \).

By theorem 3 of [KJ4] the converse is also true. If the Banach-Mazur distance between \(A \) and a Banach algebra \(B \) is smaller than \(1 + \varepsilon' \), then \(B = A_\times \) for some new multiplication \(\times \) on \(A \), which satisfies (1) with \(\varepsilon \rightarrow 0 \) as \(\varepsilon' \rightarrow 0 \).

Small deformations of uniform algebras were studied in [BJ1-2, KJ1-5, RR1-7] and other papers. The main question concerns stability of various properties of uniform algebras. We say that a property \(\mathcal{P} \) is stable if for any uniform algebra \(A \) having the property \(\mathcal{P} \) there is an \(\varepsilon > 0 \) such that any \(\varepsilon \)-deformation \(A_\times \) of \(A \) has also this property. The following properties are stable.

1. \(A \) is Dirichlet [KJ4].
2. Choquet boundary of \(A \) is compact [KJ4].
3. \(A = C(S), \quad S \) a compact Hausdorff space [KJ4].
4. \(A = A(D) \) [RR6].
5. \(A = H^\infty(D), \) [KJ5].
6. \(A \) is an algebra of analytic functions of a finite bordered, possibly singular, Riemann surface [RR7].

The stability of the last property and related questions were studied by R. Rochberg in a series of papers [RR1—7] ([RR7] gives the most comprehensive exposition).

Our knowledge about deformations of algebras of analytic functions of one variable is still incomplete (especially for non-separable algebras), but already quite extensive. By contrast we know almost nothing about deformations of
algebras of analytic functions of many variables. In this note we prove that a small deformation of a polydisc algebra $A(D^n)$ produces a uniform algebra, whose structure is quite similar to that of $A(D^n)$. The result should be seen only as a very small first step toward a comprehensive description of deformations of algebras of analytic functions of many variables.

§1. Notation.

We use standard Banach space terminology. For a compact space X, $C(X)$ denotes Banach algebra of all continuous, complex valued functions on X, with sup norm. A uniform algebra is a unital subalgebra of $C(X)$, which separates points of X. Further, $\mathfrak{M}(A)$, ∂A and ChA denote the maximal ideal space (= spectrum), Shilov boundary, and the Choquet boundary of A, respectively. We frequently identify A, via the Gelfand transform, with a subalgebra of $C(\mathfrak{M}(A))$ or of $C(\partial A)$. Hence for $F \in \mathfrak{M}(A)$ and $f \in A$ we may write $F(f)$ as well as $f(F)$. A^{-1} is the set of all invertible elements of A.

For a compact subset K of X we put $A \upharpoonright K = \{ f \upharpoonright K : f \in A \subset C(X) \}$. $A \upharpoonright K$ is a subalgebra of $C(K)$. By a linear extension from $A \upharpoonright K$ into A we mean a linear, continuous map $\Psi : A \upharpoonright K \to A$ such that

$$\Psi(g) \upharpoonright K = g \text{ for all } g \in A \upharpoonright K, \text{ and } \Psi(1) = 1.$$

K is called a peak set for A if there is a sequence of functions f_n in A such that

$$f_n = 1 \text{ on } K, \quad \| f_n \| = 1 \text{ for all } n \in \mathbb{N},$$

and $f_n \to 0$ uniformly on any compact subset of $X \setminus K$.

If K consists of a single point, this point is called a peak point. It is well-known that, for a separable uniform algebra A, ChA is equal to the set of all peak points for A. It is also well-known that the algebra $A \upharpoonright K$ is complete if K is a peak set for A.
For \(f_0 \in C(X) \), \(f_0 \cdot A = \{ f_0 \cdot f : f \in A \subset C(X) \} \). If \(\Omega \) is an open and bounded subset of \(\mathbb{C}^n \) then \(A(\Omega) = \{ f \in C(\Omega) : f \big|_{\Omega} \text{ is holomorphic} \} \).

The unit disc in \(\mathbb{C} \) we denote by \(D \). If \(f : U \to \mathbb{C} \), where \(U \subseteq \mathbb{C} \), then \(1f : U \times \mathbb{C} \to \mathbb{C} \) is defined by \(1f(z,w) = f(z) \) \((2f(z,w) = f(w) \), respectively \).

For \(z \in D \), \(L_z \) is the corresponding Blaschke factor, that is
\[
L_z(w) = \frac{z - w}{1 - \bar{z}w}, \quad w \in \overline{D}.
\]
Hence \(1L_z \) is the function defined on \(\overline{D} \times \mathbb{C} \) by
\[
1L_z(w_1, w_2) = \frac{z - w_1}{1 - \bar{z}w_1}, \quad w_1 \in \overline{D}, \quad w_2 \in \mathbb{C}.
\]

The Banach-Mazur distance \(d_{B-M} \) between Banach spaces \(A \) and \(B \) is defined by
\[
d_{B-M}(A,B) = \inf \{ \| T \| \| T^{-1} \| : T : A \to B \text{ is an isomorphism} \}.
\]

§2. The Results.

Theorem 1. Let \(B \) be a complex function algebra such that \(d_{B-M}(A(D^n),B) < 1 + \epsilon \) with \(\epsilon < \epsilon_0 \). Then \(\mathcal{M}(B) \cong \overline{D}^n \), so \(B \) can be seen as a subalgebra of \(C(\overline{D}^n) \). There is a linear isomorphism \(T : A(D^n) \to B \) such that

\[
(1) \quad \| Tf - f \| \leq \epsilon' \| f \| \quad \text{for } f \in A(D^n).
\]

Moreover, \(D^n \) can be given a structure \(\tau \) of an \(n \)-dimensional complex manifold such that all functions from \(B \) are \(\tau \)-holomorphic.

Here \(\epsilon_0 > 0 \) is an absolute constant and \(\epsilon' \to 0 \) as \(\epsilon \to 0 \).

Before we prove the theorem we discuss some general results concerning small
perturbations of functions algebras.

Proposition 1. Let A be a complex function algebra and B a complex Banach algebra. If there is a linear isomorphism $T: A \rightarrow B$ with $\| T \| \cdot \| T^{-1} \| < 1 + \varepsilon$ and $T(1) = 1$ then B is a uniform algebra and

$$\| g \| \geq \sigma_B(g) \geq (1 - \varepsilon') \| g \| \quad g \in B,$$

where $\varepsilon' \rightarrow 0$ as $\varepsilon \rightarrow 0$.

Proof. We define a second multiplication \times on the Banach space A by

$$f \times g = T^{-1}(Tf \cdot Tg) \quad f, g \in A.$$

We have

$$\| f \times g \| \leq (1 + \varepsilon^3) \| f \| \cdot \| g \| \quad f, g \in A.$$

Both multiplications on A have the same unit. Hence by Theorem 3.1 (v) of [KJ4] there is a function algebra B_1 and a linear isomorphism $T_1: A \rightarrow B_1$ with $\| T_1 \| \cdot \| T_1^{-1} \| \leq 1 + \varepsilon_1$ ($\varepsilon_1 \rightarrow 0$ as $\varepsilon \rightarrow 0$) and such that

$$T^{-1}(Tf \cdot Tg) = f \times g = T_1^{-1}(Tf \cdot Tg) \quad f, g \in A.$$

So $T_1 \circ T^{-1}: B \rightarrow B_1$ is an algebra isomorphism and

$$\sigma_B(g) = \sigma_{B_1}(T_1 \circ T^{-1}(g)) \geq \| T_1 \circ T^{-1}(g) \| \geq (1 + \varepsilon)^{-1} (1 + \varepsilon_1)^{-1} \| g \|$$

for any $g \in B$.

Proposition 2. Let A be a function algebra, let $f_0 \in A \setminus A^{-1}$ be such that $|f_0| \equiv 1$ on ∂A and such that $f_0A = \{ f \in A: f |_K \equiv 0 \}$, where $K = \{ x \in M(A): f_0(x) = 0 \}$. Assume also that there is a linear, norm one extension $\Psi: A |_K \rightarrow A$. If T is a linear isomorphism from A onto a function algebra $B \subseteq C(\partial A)$ such that

$$(2) \quad | Tf(x) - f(x) | \leq \varepsilon \| f \| \quad f \in A, \ x \in \partial A,$$
with \(\varepsilon \leq \varepsilon_0 \) (absolute constant), then

(i) \(g_0 = Tf_0 \in B \setminus B^{-1} \),

(ii) \(g_0B = \{ g \in B : g \|_L = 0 \} \), where \(L = \{ x \in \mathcal{M}(B) : g_0(x) = 0 \} \),

and

(iii) \(\Phi : A \mid_K \to B \mid_L \) defined by \(\Phi(f) = T(\Psi(f)) \mid_L \) is a surjective linear isomorphism with \(\| \Phi \| \| \Phi^{-1} \| \leq 1 + \varepsilon' \), where \(\varepsilon' \to 0 \) as \(\varepsilon \to 0 \).

Proof. The part (i) follows from Proposition 15.3 of [KJ4], we show (ii) and (iii).

Let \(f_1, f_2 \in A \) be such that \(f_0f_1 = f_0f_2 \). Since \(f_0 \neq 0 \) on \(\partial A \), it follows that \(f_1 - f_2 \equiv 0 \) on \(\partial A \), so \(f_1 = f_2 \). Hence we can define a linear, surjective map \(S : f_0A \to g_0B \) by \(S(f_0 \circ f) = g_0 \circ Tf \). By (2) we have

\[
(3) \quad |Sf(x) - f(x)| \leq 2\varepsilon \|f\| \quad f \in f_0A.
\]

Hence \(g_0B \) is a closed ideal of \(B \) contained in the closed ideal \(\{ g \in B : g \|_L = 0 \} \).

If these two ideals were not equal then \(B / g_0B \) would not be a uniform algebra, since the spectral radius of any element of \(\{ g \in B : g \|_L = 0 \} / g_0B \) would be equal to zero (note that any linear-multiplicative functional that annihilates \(g_0B \) annihilates also \(\{ g \in B : g \|_L = 0 \} \)). We will show that \(B / g_0B \) is a uniform algebra which will prove (ii).

We define a map \(\widetilde{S} : A \to B \) by
\[
\tilde{S}(f) = T(\Psi(f|_K)) + S(f - \Psi(f|_K)), \quad f \in A.
\]

By (2) and (3), for any \(f \in A \) we have
\[
\| \tilde{S}(f) - f \|_{\partial A} = \| \tilde{S}(f) - \Psi(f|_K) - (f - \Psi(f|_K)) \|_{\partial A} \leq \varepsilon \| \Psi(f|_K) \| + 2\varepsilon \| f - \Psi(f|_K) \| \leq 5\varepsilon \| f \|.
\]

Hence, and by (2), \(\tilde{S} \) is a linear surjective isomorphism of \(A \) onto \(B \) with
\[
\| \tilde{S} \| \| \tilde{S}^{-1} \| \leq (1+5\varepsilon)/(1-5\varepsilon) = 1+\varepsilon_1.
\]

On the subspace \(f_0 A = \{ f \in A : f|_K \equiv 0 \} \) of \(A \), \(\tilde{S} \) coincides with \(S \) and maps \(f_0 A \) onto \(g_0 B \).

Hence the map \(\Phi : A/f_0 A \to B/g_0 B \) defined by \(\Phi(f+f_0 A) = \tilde{S}(f) + g_0 B \) is a linear surjective isomorphism of the Banach algebra \(A/f_0 A \) onto \(B/g_0 B \) such that \(\| \Phi \| \| \Phi^{-1} \| \leq 1+\varepsilon_1 \) and \(\Phi(1) = 1 \). The map on \(A|_K \) defined by \(f \mapsto \Psi(f) + f_0 A \in A/f_0 A \) is an isometry and algebra isomorphism of a function algebra \(A|_K \) onto \(A/f_0 A \). Hence, by Proposition 1, \(B/g_0 B \) is a uniform algebra and the spectral radius and the norm almost coincide in \(B/g_0 B \).

On the other hand the maximal ideal space of \(B/g_0 B \) can be identified with \(L \) and the spectral norm is given by the supremum over the maximal ideal space so \(B/g_0 B \) and \(B|_L \) are almost isometric. This gives (iii).

Proposition 3. Let \(B \) be a complex function algebra such that
\[
d_{B-M}(A(D^n), B) < 1+\varepsilon \quad \text{with} \quad \varepsilon < \varepsilon_0.
\]
If \(K \subseteq \partial A(D^n) = \partial B \) is a peak set for the algebra \(A(D^n) \) then \(K \) is also a peak set for the algebra \(B \) and
\[
d_{B-M}(A|_K, B|_K) \leq 1+\varepsilon_1 \to 1 \quad \text{as} \quad \varepsilon \to 0.
\]
The above proposition follows immediately from Theorem 16.7 of [KJ4].

§3. Proof of Theorem 1.

To simplify the notation we prove the result for \(n = 2 \). It will be quite transparent how to write the general case. Put \(X = \partial D \times \partial D = \partial A(D^2) \). By Theorem 3.1 of [KJ4] \(\partial B \cong X \) so \(B \) can be seen as a subalgebra of \(C(X) \). There is also a linear isomorphism \(T: A(D^2) \to B \) such that

\[
\left| Tf(z,w) - f(z,w) \right| \leq \varepsilon' \| f \| \quad f \in A(D^2), \ (z,w) \in X.
\]

To prove the result we have to show that \(\mathfrak{M}(B) \cong \overline{D}^2 \), that (4) holds for all \((z,w) \in \overline{D}^2 \) and that \(D^2 \) can be given a structure \(\tau \) of 2-dimensional complex manifold such that all functions from \(B \) are \(\tau \)-analytic.

We construct a homeomorphism \(\varphi \) from \(\overline{D}^2 \) onto \(\mathfrak{M}(B) \) in several steps. \(\overline{D}^2 \) is a union of three disjoint sets: \(X, \partial D \times D \cup D \times \partial D = \partial(D^2) \setminus X, \) and \(D^2 \).

Step 1. Definition of \(\varphi \) on \(X \).

We put \(\varphi(x) = x \) for \(x \in X \).

Step 2. Definition of \(\varphi \) on \(\partial(D^2) \setminus X \).

We need the following lemma which is a combination of lemmas 3.1, 3.2 and 3.3 of [RR6].

Lemma 1. Let \(S \) be a linear isomorphism from \(A(D) \) onto a uniform algebra \(B_1 \subseteq C(\partial D) \) such that
\[|Sf(w) - f(w)| \leq \varepsilon \| f \|, \quad f \in A(D), \ w \in \partial D. \]

For any \(z \in D \) we put \(\psi(z) = \{ g \cdot S(L_z) \in B_1 : g \in B_1 \} \) and for \(z \in \partial D \) we put \(\psi(z) = z \in \M(B_1) \). Then for any \(z \in \overline{D} \) we have

(i) \(\psi(z) \in \M(B_1) \),

(ii) \(\psi \) is a homeomorphism of \(\overline{D} \) onto \(\M(B_1) \), and

(iii) \[|Sf(\psi(z)) - f(z)| \leq 2\varepsilon \| f \| , \quad f \in A(D), \ z \in \overline{D}. \]

To define \(\varphi \) on \(\overline{D} \times \partial D \) let \(w_0 \in D \) and put \(K_{w_0} = \overline{D} \times \{ w_0 \} \). \(K_{w_0} \) is a peak set for \(A(D^2) \) and \(A(D^2)|_{K_{w_0}} \) is isometrically isomorphic with the disc algebra. The maximal ideal space of \(A(D^2)|_{K_{w_0}} \) can be identified with \(K_{w_0} \). By Proposition 3, Theorem 3.1 of [KJ4], and Lemma 1 we get a homeomorphism \(\varphi(\cdot, w_0) \) from \(K_{w_0} \) onto \(\M(B|_{K_{w_0}}) \subseteq \M(B) \). For \(z \in D \), \(\varphi(z, w_0) \) is the maximal ideal of \(B \) consisting of all functions \(g \in B \subseteq C(\M(B)) \) such that \(g|_{\varphi(K_{w_0})} \) is divisable by \(T^{(1)}L_z|_{\varphi(K_{w_0})} \).

Recall that according with the notation described in the previous section \(^1L_z: \overline{D}^2 \rightarrow \C \) is defined by \(^1L_z(\alpha, \beta) = L_z(\alpha) \), where \(L_z \) is the Blaschke factor.

In the same way we define \(\varphi \) on \(\partial D \times \overline{D} \).

Step 3. Definition of \(\varphi \) on \(D^2 \).

Let \((z_0, w_0) \in D^2 \). We put
\[\varphi(z_0, w_0) = \left\{ T(1L_{z_0})g_1 + T(2L_{w_0})g_2 : g_1, g_2 \in B \right\}. \]

We have to show that \(\varphi(z_0, w_0) \) is a proper maximal ideal of \(B \). We first show that \(\varphi(z_0, w_0) \) is a proper ideal. To this end assume that there are \(g_1, g_2 \in B \) such that

\[T(1L_{z_0})g_1 + T(2L_{w_0})g_2 \equiv 1. \]

Put \(L = \left\{ x \in \mathfrak{M}(B) : T(1L_{z_0})(x) = 0 \right\} \). By (5) we have

\[T(2L_{w_0}) \cdot g_2 \equiv 1 \quad \text{on} \quad L. \]

Put \(f_0 = 1L_{z_0} \) and \(K = \left\{ x \in \overline{D}^2 : 1L_{z_0}(x) = 0 \right\} = \{z_0\} \times \overline{D} \). By Proposition 2, there is an almost isometry \(\Phi \) from \(A(D) \cong A(D^2) \vert K \) onto \(B \vert L \) given by \(\Phi(f) = T(2f) \vert L \). By [RR6] \(\Phi(L_{w_0}) = T(2L_{w_0}) \vert L \) is a noninvertible element of \(B \vert L \), which contradicts (6) and proves that \(\varphi(z_0, w_0) \) is a proper ideal.

We show that \(\varphi(z_0, w_0) \) is a maximal ideal. Set

\[S_1 : A(D^2) \rightarrow A(D), \quad S_1(f) = f(\cdot, w_0); \quad S_2 : A(D^2) \rightarrow A(D^2), \quad S_2(f) = \frac{(f - S_1(f))}{2L_{w_0}}. \]

Any \(f \in A \) can be decomposed as follows

\[f = f(z_0, w_0) + 1L_{z_0} \cdot \frac{S_1(f) - f(z_0, w_0)}{L_{z_0}} + 2L_{w_0} \cdot S_2(f). \]

So we can define a linear map \(\Psi_{z_0, w_0} : A(D^2) \rightarrow B \) by

\[\Psi_{z_0, w_0}(f) = f(z_0, w_0) + T(1L_{z_0}) \cdot T\left(\frac{S_1(f) - f(z_0, w_0)}{L_{z_0}} \right) + T(2L_{w_0}) \cdot T(S_2(f)). \]

By (4) \(\Psi \) is close to the identity map so it is a surjective isomorphism. Hence
\[B_{z_0,w_0} = \Psi_{z_0,w_0}(\{ f \in A(D^2) : f(0,0) = 0 \}) \] is a closed subspace of \(B \) of dimension one. We also have \(B_{z_0,w_0} \subseteq \varphi(z_0,w_0) \varsubsetneq B \). Hence \(B_{z_0,w_0} = \varphi(z_0,w_0) \) is a proper maximal ideal of \(B \).

Step 4. \(\varphi \) is continuous on \(D^2 \).

A maximal ideal of a function algebra \(B \) can be identified with a linear-multiplicative functional on \(B \) or with an element from the domain of a function \(g \in B \). From the definitions of \(\varphi \) and \(\Psi_{z_0,w_0} \) we get

\[g(\varphi(z_0,w_0)) = (\Psi_{z_0,w_0})^{-1}(g)(z_0,w_0). \] (7)

Hence, for any \(g \in B \), with \(\| g \| \leq 1 \) we have

\[|g(\varphi(z_0,w_0)) - g(\varphi(z_1,w_1))| \leq d_H((z_0,w_0), (z_1,w_1)) \| (\Psi_{z_0,w_0})^{-1} - (\Psi_{z_1,w_1})^{-1} \| \]

where \(d_H(\cdot, \cdot) \) is the hyperbolic distance on \(D^2 \). Hence \(\varphi |_{D^2} : D^2 \to \mathcal{M}(B) \) is a continuous map if \(\mathcal{M}(B) \) is equipped with the norm topology, it is more so continuous if we take \(\mathcal{M}(B) \) with its original weak * topology.

Step 5. \(\varphi \) is continuous.

The following is an obvious topological observation.

Let \(X \) be a compact metric space, \(Y \) a topological space, \(G \) a dense subspace of \(X \) and \(\phi \) a function from \(X \) into \(Y \). If \(\phi | G \) is continuous and if for any \(x_0 \in X \setminus G \) and any sequence \(x_n \) in \(G \) convergent to \(x_0 \) and such that \(\phi(x_n) \) is convergent we have \(\lim_{n \to \infty} \phi(x_n) = \phi(x_0) \), then \(\phi \) is
continuous.

To end the proof of the continuity of φ let $(z_0, w_0) \in \overline{D^2} \setminus D^2$ and let (z_n, w_n) be a sequence in D^2 convergent to the point (z_0, w_0) and such that $\varphi(z_n, w_n)$ is convergent to $x_0 \in \mathcal{M}(B)$. From (7), (4) and the definition of Ψ_{z_0, w_0} by a direct computation we get

(8) \[|Tf(\varphi(z_0, w_0)) - f(z_0, w_0)| \leq 10\varepsilon' \| f \|, \quad f \in A(D^2), \ (z_0, w_0) \in D^2.\]

Hence

(9) \[|Tf(z_0) - f(z_0, w_0)| \leq 10\varepsilon' \| f \| \quad f \in A(D^2).\]

Assume first that $(z_0, w_0) \in X = \partial A(D^2)$. From (10) and (4) we have

(10) \[|Tf(z_0) - Tf(z_0, w_0)| \leq \varepsilon' \| f \|, \quad f \in A(D^2).\]

Since (z_0, w_0) is a peak point for $A(D^2)$ it is also a peak point for B ([KJ], Theorem 16.7) so the distance, in the norm topology, between the functional $(z_0, w_0) \in \mathcal{M}(B)$ and any other functional x_0 from $\mathcal{M}(B)$ is equal to two. Hence, by (10) we get $(z_0, w_0) = x_0$. Assume now that $(z_0, w_0) \in \partial D^2 \setminus X$, say $z_0 \in D$ and $w_0 \in \partial D$. Put as before $K_{w_0} = \overline{D} \times \{w_0\}$. We know that K_{w_0} is a peak set for $A(D^2)$ and that $\varphi(K_{w_0}) \subseteq \mathcal{M}(B)$ is a peak set for B. Assume that $x_0 \in \varphi(K_{w_0})$. Let μ be a probabilistic measure on $X = \partial B$ which represents the functional x_0, this is such that $\int_X g \, d\mu = g(x_0)$ for $g \in B$. Since $\varphi(K_{w_0})$ is a peak set not containing x_0, μ is concentrated outside of $K_{w_0} \cap X = \partial D \times \{w_0\}$, so $\mu(K_{w_0}) = 0$. Let f_n be a sequence of norm one elements of $A(D^2)$ such that $f_n \equiv 1$ on K_{w_0} and $f_n \to 0$ uniformly on any open subset of $\overline{D^2} \setminus K_{w_0}$. By (4) we get

\[|Tf_n(z_0)| = | \int_X f_n \, d\mu | \to \varepsilon' \quad \text{as} \quad n \to \infty.\]

On the other hand, from (10), for any $n \in \mathbb{N}$ we get
\[|Tf_n(x_n) - 1| = |Tf_n(z_0, w_0)| \leq 10\varepsilon'. \]

Hence \(x_0 \in \varphi(K_{w_0}), \ x_0 = \varphi(\alpha, w_0) \). We need to show that \(\alpha = z_0 \). By the definitions of \(\Psi_{z,w} \) and \(\varphi \) on \(D^2 \), for any \(n \in \mathbb{N} \) we have

\[T(1L_{z_n})(\varphi(z_n, w_n)) = 0. \]

The sequence \(T(1L_{z_n}) \) is convergent, in norm, to \(1L_{z_0} \) and \(\varphi(z_n, w_n) \) is weak * convergent to \(\varphi(\alpha, w_0) \), hence

\[T(1L_{z_0})(\varphi(\alpha, w_0)) = 0. \]

By the definition of \(\varphi \) on \(K_{w_0} = \overline{D} \times \{w_0\} \), \(\varphi(z_0, w_0) \) is the only point of \(\varphi(K_{w_0}) \) where \(T(1L_{z_0}) \) is equal to zero. Hence \(\varphi(z_0, w_0) = \varphi(\alpha, w_0) \). The map \(\varphi \) is a homeomorphism of \(K_{w_0} \) onto \(\varphi(K_{w_0}) \) so \(z_0 = \alpha \).

Step 6. \(\varphi \) is one to one.

By the definition of \(\varphi \) and Theorem 16.7 of [KJ4] \(\varphi \) is one to one on \(\partial D^2 \) and \(\varphi(\partial D^2) \cap \varphi(D^2) = \emptyset \). We have to show that \(\varphi \) is one to one on \(D^2 \).

Assume \((z_i, w_i) \in D^2, i = 1,2 \) are such that \(\varphi(z_1, w_1) = \varphi(z_2, w_2) \).

Expanding \(1L_{z_2} \) in powers of \(1L_{z_1} \) we get

\[1L_{z_2} = L_{z_2}(z_1) \cdot (1 - |L_{z_2}(z_1)|^2) \cdot 1L_{z_1} + \overline{L_{z_2}(z_1)} \cdot (1L_{z_1})^2 \cdot f, \]

where \(f \in A(D^2), \ |f| \leq 2 \).

Applying the operator \(T \) to the above equation, then evaluating at the point

\[\varphi(z_1, w_1) = \varphi(z_2, w_2) \in \mathcal{M}(B) \]

yields

\[0 = L_{z_2}(z_1) + \overline{L_{z_2}(z_1)} \cdot T((1L_{z_1})^2 \cdot f)(\varphi(z_1, w_1)). \]

By (9) we have \(|T((1L_{z_1})^2 \cdot f)| \leq 10\varepsilon' |f| \) so finally we get

\[|L_{z_2}(z_1)| \leq |L_{z_2}(z_1)| 10\varepsilon'. \]

If \(10\varepsilon' < 1 \), this proves that \(z_1 = z_2 \); the same argument shows that \(w_1 = \)
Step 7. For any \((z,w) \in D^2\) there is a neighborhood \(U\) of \(\varphi(z_0,w_0)\) in \(\mathcal{W}(B)\) and a homeomorphism \(\tau\) of \(U\) onto \(D^2\) such that \(g \circ \tau^{-1}\) is analytic for any \(g \in B\).

Note that after we prove that \(\varphi\) is surjective this will give us the desired analytic structure on \(D^2 \cong \varphi(D^2)\).

It follows from the definition of \(\varphi(z_0,w_0)\), for \((z_0,w_0) \in D^2\) that for any \(g \in B\) with \(g(\varphi(z_0,w_0)) = 0\) there are \(g_1, g_2 \in B\) such that \(\|g_i\| \leq 3\|g\|,\ i = 1,2\) and

\[
g = T(1)z_0 \cdot g_1 + T(2)w_0 \cdot g_2.
\]

By the Gleason Embedding Theorem ([TG], p.154) there is a neighborhood \(U\) of \(\varphi(z_0,w_0)\) in \(\mathcal{W}(B)\) and a homeomorphism \(\tau\) of \(U\) onto an analytic variety \(V \subseteq \mathbb{C}^2\). Since \(\varphi\) defines a continuous embedding of \(D^2\) into \(\mathcal{W}(B)\), the topological dimension of \(U\), and so of \(V\) is at least 4, hence \(V\) is an open subset of \(\mathbb{C}^2\). The homeomorphism \(\tau\) given by the Gleason Theorem is such that \(g \circ \tau^{-1}\) is analytic for any \(g \in B\).

Step 8. Let \(F \in \mathcal{W}(B)\) and \((z_0,w_0) \in D^2\). Assume that

\[
\| F - \varphi(z_0,w_0) \| < \frac{1}{27}, \quad \text{where } F \text{ and } \varphi(z_0,w_0) \text{ are considered to be functionals on } B. \]

Then \(F \in \varphi(D^2)\).

The above statement will follow from Step 7 and from the proof of the Gleason Embedding Theorem ([TG], p.154-155). Since \(\|g_i\| \leq 3\|g\|,\ i = 1,2\) in (11), we get

\[
U = \left\{ x \in \mathcal{W}(B) : \ |T(1)z_0(x)| < \frac{1}{24}, \quad |T(2)w_0(x)| < \frac{1}{24}\right\},
\]

\[
V = D^2(\frac{1}{24}) \quad \text{and}
\]

(12) \(\tau: U \to V\) is given by \(\tau(x) = (T(1)z_0(x), T(2)w_0(x))\).
Put \(G = \{(z,w) \in D^2 : \max \{|L_{z_0}(z)|, |L_{w_0}(w)|\} < \frac{1}{25}\} \). \(G \) is an open subset of \(\mathbb{C}^2 \), diffeomorphic with \(D^2 \). By (8), if \(\varepsilon' \) is small enough, \(\varphi(G) \subseteq U \). Hence \(\tau \circ \varphi : G \to V \) is a continuous, injective map from \(G \) into \(D^2 \). We define \(\kappa : D^2(\frac{1}{25}) \to \mathbb{C}^2 \) by
\[
\kappa(z,w) = \tau \circ \varphi\left(L_{z_0}^{-1}(z), L_{w_0}^{-1}(w)\right).
\]
The map \(\kappa \) is continuous, one to one and by (12) and (9) we have
\[
d_E(\kappa(z,w) - (z,w)) \leq 10\sqrt{2} \varepsilon', \quad (z,w) \in V,
\]
where \(d_E(\cdot, \cdot) \) is the Euclidean metric on \(\mathbb{C}^2 \). Hence we get
\[
D^2(\frac{1}{25}) \subseteq \kappa\left(D^2(\frac{1}{25})\right) \subseteq D^2(\frac{1}{24}).
\]
This shows that
\[
\varphi(D^2) \supseteq \left\{x \in \mathbb{M}(B) : |T^{(1)}L_{z_0}(x)| < \frac{1}{25}, |T^{(2)}L_{w_0}(x)| < \frac{1}{25}\right\},
\]
and since the norms of \(T^{(1)}L_{z_0} \) and \(T^{(2)}L_{w_0} \) are not smaller than \(1 - \varepsilon' \) this ends the proof of this Step.

\textbf{Step 9.} \(\varphi \) maps \(\overline{D^2} \) onto \(\mathbb{M}(B) \).

We need the following Theorem of B. Johnson [BJ2].

\textbf{Theorem.} Let \(F \) be linear functional on \(A(D^2) \) such that
\[
|F(f \cdot g) - F(f) \cdot F(g)| \leq \varepsilon \|f\| \|g\| \quad f, g \in A(D^2),
\]
where \(\varepsilon < \varepsilon_0 \) (positive absolute constant). Then there is \((z,w) \in \overline{D^2} \) such that
\[| F(f) - f(z, w) | \leq \varepsilon' \| f \|, \quad f \in A(D^2), \]

where \(\varepsilon' \to 0 \) as \(\varepsilon \to 0 \).

Let \(F \in \mathcal{M}(B) \). Put \(\widetilde{F} = F \circ T \). By (4) \(\widetilde{F} \) is almost multiplicative on \(A(D^2) \) so by Theorem of Johnson there is \((z_0, w_0) \in \overline{D}^2 \) such that

\[| \widetilde{F}(f) - f(z_0, w_0) | \leq \varepsilon_1 \| f \|, \quad f \in A(D^2). \]

By (8) we have

(13) \[| T_{\varphi}(\varphi(z_0, w_0) - g(\varphi(z_0, w_0)) | \leq \varepsilon_2 \| g \|, \quad g \in B. \]

If \((z_0, w_0) \in D^2 \) then \(F \in \varphi(D^2) \) by the previous step so assume \((z_0, w_0) \in \partial(D^2) \). Without loss of generality we may assume that \(w_0 \in \partial D \).

As before \(K_{w_0} = \overline{D} \times \{ w_0 \} \) is a peak set for \(A(D^2) \) and \(A(D^2) |_{K_{w_0}} \) can be identified with the disc algebra. By the definition of \(\varphi \) on \(K_{w_0} \) and since \(A(D) \) is stable [RR6], \(\varphi(K_{w_0}) \) is the maximal ideal space of \(B |_{\varphi(K_w)} \). By Theorem 16.1 of [KJ4] \(\varphi(K_{w_0}) \) is a peak set for \(B \) so

\[\| F_1 - \varphi(z, w) \| = 2 \]

for any \((z, w) \in K_{w_0} \) and functional \(F_1 \in \mathcal{M}(B) \setminus \varphi(K_{w_0}) \). By (13) this gives \(F \in \varphi(K_{w_0}) \).

§4. Open Problems.

Problem 1. Let \(B \) be as in Theorem 1. Is \((D^n, \tau) \) holomorphically equivalent to an open subset \(\Omega \) of \(\mathbb{C}^n \)? Or, equivalently, is \(B \) isometric with \(A(\Omega) \)?

Problem 2. Let \(B \) be as in Theorem 1. Is there a continuous (real analytic)
family of deformations from $A(D^n)$ to B. That is, does it exist a continuous (real analytic) map $\alpha \mapsto T_\alpha$ from the unit segment into $\mathcal{L}(A(D^n), C(D^n))$, such that $\text{Im}(T_\alpha)$ is a uniform algebra for $\alpha \in [0,1]$?

Problem 3. Extend the result of Theorem 1 to other domains in \mathbb{C}^n.

Problem 4. Can Theorem 1 be extended to cover non-separable algebra $H^\infty(\Omega)$ of analytic, bounded functions on Ω?

References

[RR1] R. Rochberg, “Almost isometries of Banach Spaces and moduli of

