Reprinted from

BULLETIN

of the

AUSTRALIAN MATHEMATICAL SOCIETY

Volume 30 Number 1

August 1984

Fixed point theorems by altering distances between the points
by M. S. Khan, M. Swaleh and S. Sessa .. 1

On the structure of polynomially normal operators
by Fuad Kittaneh ... 11

Efficiency of a university timetable. An application of entropy of choice
by William E. Smith ... 19

On a C-plane of order 25
by M. L. Narayana Rao and K. Satyanarayana 27

On p-valent starlike functions with reference to the Bernardi integral operator
by Vinod Kumar and S. L. Shukla ... 37

Forms of low degree in finite fields
by Morris Orzech .. 45

A class of translation planes of square order
by M. L. Narayana Rao, K. Satyanarayana and G. Vithal Rao 59

Central commutators
by A. Caranti and C. M. Scoppola .. 67

Some results on quotients of triangle groups
by Marston D. E. Conder .. 73

Some delays do not matter
by K. Gopalsamy ... 91

Periodic solutions of the boundary value problem for the nonlinear heat equation
by M. N. Nkashama and M. Willem ... 99

On a problem of Favard concerning algebraic integers
by C. W. Lloyd-Smith ... 111

Real hypersurfaces of a complex projective space II
by Sadahiro Maeda ... 123

A characterization of weak peak sets for function algebras
by Krzysztof Jarosz .. 129

A note on subdirectly irreducible rings
by Shalom Feigelstock .. 137

Almost complex structures on four-dimensional complete intersections
by Howard Hiller .. 143

Coproducts of algebras and derivations on categories
by B. J. Day ... 153

ABSTRACTS OF AUSTRALASIAN PhD THESES

Time series in medical research
by Leslie J. Hills ... 157

A finite element approach to molecular vibration
by M. J. Hamilton .. 159

The University of Queensland Press, St Lucia, Queensland, 4067, Australia
Printed in Australia by Watson Ferguson & Co.
Registered by Australia Post—Publication No. QBQ2945
BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY

Editor: Sidley A. Morris
Deputy Editor: K. R. Pearson
Honorary Editor: B. H. Neumann

Associate Editors
Robert S. Anderssen B. J. Gardner P. E. Kloeden Ross Street
Alan L. Andrew J. R. Giles Rodney Nillson G. Szekeres
B. D. Craven J. R. J. Groves Sheila Oates-Williams D. G. Tacon
Brian A. Davey J. A. Hempel A. J. van der Poorten Colin J. Thompson
P. Donovan D. A. Holton J. H. Rubinstein H. B. Thompson
J. A. Eccleston D. C. Hunt Leon Simon Rudolf Výborný

Assistant Editors
Robert S. Anderssen M. S. Brooks

INFORMATION FOR AUTHORS

The BULLETIN of the Australian Mathematical Society aims at quick publication of original research in all branches of mathematics. Timely expository articles are also welcomed.

To ensure speedy publication, editorial decisions on acceptance or otherwise are taken quickly, normally within a month of receipt of the paper. Papers are accepted only after being evaluated by the Editor and an Associate Editor or another expert. Of course responsibility for the correctness of results published in the BULLETIN remains with the authors.

For a paper to be acceptable for publication, not only should it contain new and interesting results but also

(i) the exposition should be clear and attractive, and
(ii) the manuscript should be in publishable form, without revision.

Nevertheless some meritorious papers will have to be rejected because speed of publication involves space limitations.

Authors should submit THREE clean, high quality copies to
Dr S. Oates-Williams,
Department of Mathematics, University of Queensland,
St. Lucia, Queensland, 4067, Australia

but should not send the original typescript of their papers, as material submitted to the BULLETIN will usually not be returned. Authors should note that each paper submitted must include an abstract and one or more classification numbers following the 1980 Mathematics Subject Classification.

As even minor revisions are generally not permitted, authors should read carefully all the details listed on the inside back cover.

Abstracts of PhD Theses

The BULLETIN endeavours to publish abstracts of all accepted Australasian PhD theses in mathematics. One restriction, however, is that the abstract must be received by the Editor within 6 months of the degree being approved.

© Copyright Statement. Where necessary, permission to photocopy for internal or personal use or the internal or personal use of specific clients is granted by the Treasurer, Australian Mathematical Publishing Association, Inc., for libraries and other users registered with the Copyright Clearance Center (CCC), provided that the base fee of $2.00 per copy of article is paid directly to CCC, 21 Congress Street, Salem, MA 01970, U.S.A. Special requests should be addressed to the Treasurer, Australian Mathematical Publishing Association, Inc. c/- Department of Mathematics, University of Queensland, St. Lucia, Qld., 4067, Australia. Serial fee code: 0004-9727/84 $2.00 + 0.00

Continued Inside Back Cover
A CHARACTERIZATION OF WEAK PEAK SETS
FOR FUNCTION ALGEBRAS

KRZYSZTOF JAROSZ

Let $A \subset C(S)$ be a function algebra. In this paper we prove that $S_o = \overline{S_o} \subset S$ is a weak peak set for A if and only if for any open neighbourhood U of S_o there is an f in A such that $|f| \leq 2$, $|f(x) - 1| \leq 1/3$ on S_o and $|f(x)| \leq 1/3$ on $S \setminus U$.

Let S be a compact Hausdorff space. We shall denote by $C(S)$ ($C^r(S)$) the Banach algebra of all complex (real) valued continuous functions on S, provided with a usual supremum norm. Let A be a function algebra on S, i.e. a closed subalgebra of $C(S)$ which contains the constant functions and which separates points of S. A closed subset S_o of S is called a weak peak set for A if for any open neighbourhood U of S_o there is an f in A such that $1 = \|f\| = f(s)$ for $s \in S_o$ and $|f(s)| < 1$ for $s \in S \setminus U$. A one-point weak peak set is called a weak peak point. A classical Bishop's the so-called "1/4 - 3/4" criterion (see e.g. [4] p. 263) gives the following characterization of weak peak points:

THEOREM [Bishop]. Let A be a function algebra on S. A point $s_o \in S$ is a weak peak point for A if and only if there are constants $K \geq 1$ and $\alpha < 1$ such that for any open neighbourhood U of S_o there is an f in A such that $\|f\| \leq K$, $f(s_o) = 1$ and $|f(s)| \leq \alpha$ for $s \in S \setminus U$

Received 24 February 1984.
The aim of this note is to give the following generalization of the above criterion:

THEOREM. Let A be a function algebra on a compact Hausdorff space S and let S_0 be a closed subset of S. Then S_0 is a weak peak set for A if and only if there are constants $K > 1$, $c_1 > 0$, $c_2 > 0$ with $c_1 + c_2 < 1$ such that for any open neighbourhood U of S_0 there is an f in A such that $\|f\| = K$, $|f(s) - 1| < c_2$ for $s \in S_0$ and $|f(s)| < c_1$ for $s \in S \setminus U$.

Please note that the definition of a weak peak set is evidently equivalent to the following one ([4]):

Let A be a function algebra on S and let S_0 be a closed subset of S then S_0 is a weak peak set for A if and only if for any $\epsilon > 0$ and any open neighbourhood U of S_0 there is an f in A such that $1 = \|f\| = f(s)$ for $s \in S_0$ and $|f(s)| < \epsilon$ for $s \in S \setminus U$.

Hence the "only if" part of our theorem is trivial: that is, if $S_0 \subseteq S$ is a weak peak set for A then we can take c_1, c_2 any positive numbers and put $K = 1$.

We divide the proof of our theorem into four steps; the proof of the second step is based on Bishop's proof of his criterion.

Assume that the assumption of Theorem is fulfilled.

STEP 1. For any $\epsilon > 0$ there is a positive constant $K(\epsilon)$ such that for any open neighbourhood U of S_0 there is an f in A such that $|f(s)| < \epsilon$ for $s \in S \setminus U$; $|f(s)| \leq 1$ and $|f(s) - 1| < \epsilon$ for $s \in S_0$ and $\|f\| \leq K(\epsilon)$.

Proof. Let $f_1 \in A$ be such that $|f_1(s)| \leq c_1$ for $s \in S \setminus U$, $|f_1(s) - 1| \leq c_2$ for $s \in S_0$ and $\|f_1\| \leq K$. Since the discs $D_1 = \{s \in E : |s| \leq c_1\}$ and $D_2 = \{s \in E : |s - 1| \leq c_2\}$ are disjoint then, by Runge Theorem, there is a polynomial p such that $p(s) \leq \epsilon$ for $s \in D_1$ and $|p(s) - (1 - \frac{\epsilon}{2})| \leq \frac{\epsilon}{2}$ for $s \in D_2$.

Weak peak sets

Put $K(\varepsilon) = \sup \{|p(z)| : |z| \leq K\}$ and $f = p \circ f_1 \in A$.

STEP 2. Assume that there are constants K_1 and $\varepsilon < 1$ such that for any open neighbourhood U of S_0 there is an f in A such that $|f(s)| \leq \varepsilon$ for $s \in S \setminus U$; $|f(s)| \leq 1$ and $|f(s) - 1| \leq \varepsilon$ for $s \in S_0$ and $\|f\| \leq K_1$, then for any open neighbourhood U of S_0 there is a g in A such that $|g(s)| \leq \varepsilon$ for $s \in S \setminus U$; $|g(s) - 1| \leq \varepsilon$ for $s \in S_0$ and $\|g\| \leq 1$.

Proof. Fix any $\varepsilon < 1$ with $\alpha = (K_1 - 1) - \varepsilon(K_1 - 1) < 0$

and a decreasing sequence of positive numbers ε_n such that

$$\varepsilon_n (1 - \varepsilon^n) + \varepsilon^n \alpha < 0 \text{ for } n \geq 1.$$

We define by induction a sequence of functions $(h_n)_{n=1}^\infty$ from A. Let $h_1 \in A$ be any function from A such that $|h_1(s)| \leq \varepsilon$ for $s \in S \setminus U$; $|h_1(s)| \leq 1$ and $|h_1(s) - 1| \leq \varepsilon$ for $s \in S_0$ and $\|h_1\| \leq K_1$.

Assume we have defined h_1, \ldots, h_n then put

$$\mathcal{W}_n = \{s: \max_{1 \leq j \leq n} |h_j(s)| \geq 1 + \varepsilon_n\}.$$

The set \mathcal{W}_n is a closed subset of $S \setminus S_0$ so there is an $h_{n+1} \in A$ such that

$$|h_{n+1}(s)| \leq \varepsilon \text{ for } s \in (S \setminus U) \cup \mathcal{W}_n;$$

$$|h_{n+1}(s)| \leq 1 \text{ and } |h_{n+1}(s) - 1| \leq \varepsilon \text{ for } s \in S_0$$

and

$$\|h_{n+1}\| \leq K_1.$$
Let
\[g = (1 - x) \sum_{j=1}^{\infty} x^{j-1} h_j. \]

We have evidently \(|g(s)| \leq 1 \) and \(|g(s) - 1| \leq \epsilon \) for \(s \in \mathcal{S}_0 \),

\[|g(s)| \leq \epsilon \quad \text{for} \quad s \in S \setminus U, \]

and \(|g(s)| \leq 1 \) for \(s \in S \setminus \bigcup_{n=1}^{\infty} \mathcal{W}_n \). It

remains to show that if \(s \in \bigcup_{n=1}^{\infty} \mathcal{W}_n \) then \(|g(s)| \leq 1 \).

The sequence \((\mathcal{W}_n)_{n=1}^{\infty} \) is an increasing sequence of compact sets so if \(s \in \bigcup_{n=1}^{\infty} \mathcal{W}_n \) then there is a positive integer \(m \) such that \(s \in \mathcal{W}_{m+1} \)

but \(s \not\in \mathcal{W}_m \) for \(m \geq 0 \) (we put \(\mathcal{W}_0 = \emptyset \)).

We have

\[|h_j(s)| \leq 1 + \epsilon_m \quad \text{for} \quad j \leq m, \]

\[|h_{m+1}(s)| \leq K_1, \]

\[|h_j(s)| \leq \epsilon \quad \text{for} \quad j \geq m + 2, \]

hence

\[|g(s)| \leq (1 - x) \left((1 + \epsilon_m) \sum_{j=1}^{m} x^{j-1} + K_1 x^m + \epsilon \sum_{j=m+1}^{\infty} x^{j-1} \right) \]

\[= 1 + \epsilon_m (1 - x^m) + x^m (K_1 - 1 - x(K_1 - \epsilon)) < 1. \]

STEP 3. Let \(M \) be a closed subspace of \(C(S) \), let \(\pi \) be a canonical map from \(M \) onto \(M|_{\mathcal{S}_0} \equiv \{ f|_{\mathcal{S}_0} : f \in M \} \subset C(\mathcal{S}_0) \), \(\pi(f) = f|_{\mathcal{S}_0} \),

and let \(\widetilde{\pi} : M/\ker \pi \rightarrow M|_{\mathcal{S}_0} : \widetilde{\pi}(f + \ker \pi) = f|_{\mathcal{S}_0} \). Then if \(\widetilde{\pi} \) is not an isometry then there are measures \(\mu \) on \(\mathcal{S}_0 \) and \(\nu \) on \(S \setminus \mathcal{S}_0 \) such that \(\mu - \nu \perp M \) but the measure \(\mu \) represents a non-zero functional on \(M \).

Proof. Assume \(\widetilde{\pi} \) is not an isometry, there is a functional \(F_0 \) on
Weak peak sets

\[M|_{S_0} \] represented by a measure \(\nu_0 \) on \(S_0 \) such that \(\| F_0 \| = \text{var}(\nu_0) = 1 \)

but \(\| \pi_*(F_0) \| = t < 1 \). Let \(\nu \) be any measure on \(S \) which represents

the functional \(\pi_*(F_0) \) with \(\text{var}(\nu) = t \). Since \(\text{var}(\nu_0|_{S_0}) \leq t < 1 \)

then the measure \(\nu_0 - \nu|_{S_0} \) is not orthogonal to \(M \) and we can put

\[\mu = \nu_0 - \nu|_{S_0}, \quad \nu = \nu|_{S \setminus S_0}. \]

To end the proof of Theorem now fix an open neighbourhood \(U \) of \(S_0 \)

and let \(q \in C_0(S) \) be such that

\[q|_{S_0} = 1, \quad q|_{S \setminus U} = 0, \quad 1 \leq q \leq \delta \]

and put

\[M = \{ q \cdot g \in C(S) : g \in A \}. \]

We shall prove that \(\pi : M/\ker \pi \rightarrow M|_{S_0} \) is an isometry. Assume the

contrary and let \(\mu, \nu \) be as in Step 3. We can assume that the norm of

\(\mu \) on \(M|_{S_0} \) is equal to \(2 \) and let \(f \in M \) be such that \(\int f d\mu = 1 \) and

\[\| f \|_{S_0} \leq 1. \]

Fix \(0 < \delta < \| f \| (1 + \text{var}(\nu))^{-1} \). The regularity of the

measure \(\nu \) provides there is an open neighbourhood \(V \) of \(S_0 \) such that

\[|\nu|(V) < \delta \]

and, by Steps 1 and 2, there is an \(f_0 \) in \(A \) such that

\[\| f_0 \|_{S \setminus V} < \delta, \quad \| f_0 - 1 \|_{S_0} < \delta \quad \text{and} \quad \| f_0 \| < 1. \]

Since \(\nu - \mu \perp M \) and \(ff_0 \in M \) we have

\[\delta < 1 - 2\delta \leq \int_{S_0} f d\mu - \int_{S_0} f(1 - f_0) d\mu \]

\[\leq \int_{S_0} ff_0 d\mu = \int_{V} ff_0 d\nu + \int_{V} ff_0 d\nu \]

\[\leq \delta \| f \| + \text{var}(\nu) \| f \| < \delta. \]
So we have proved that \(\tilde{f} \) is an isometry and the same time we have established that:

for any open neighbourhood \(U \) of \(S_0 \) there is an \(f_U \) in \(A \) such that \(|f_U| \leq 2 \), \(f_U|_{S_0} = 1 \) and \(|f_U(s)| \leq \frac{1}{2} \) for \(s \in S \setminus U \).

Now the Theorem follows from the Bishop criterion applied to the algebra \(\tilde{A} = \{ f \in A : f|_{S_0} = \text{const} \} \).

REMARKS. The theorem we have just proved is applied to the theory of small perturbations of multiplication in function algebras (see the author's paper "Perturbations of Banach algebras" to appear and also [2], [3], [5]) but one can also get another application; for example, the following theorem due to Badé and Curtis is an immediate consequence of our theorem:

THEOREM. [Badé and Curtis]. Let \(A \) be a function algebra on a compact Hausdorff space \(S \) and assume \(A \) is boundedly \(\varepsilon \)-normal for some \(\varepsilon < \frac{1}{2} \) then \(A = C(S) \).

Where \(A \) is called boundedly \(\varepsilon \)-normal if there is a constant \(K \) such that for any closed disjoint subsets \(F, G \) of \(S \) there is an \(f \) in \(A \) with \(\|f\| \leq K \), \(|f(s)| \leq \varepsilon \) for \(s \in F \) and \(|f(s) - I| \leq \varepsilon \) for \(s \in G \).

Proof. Assume \(A \notin C(S) \) then there is a measure \(\mu \) on \(S \) orthogonal to \(A \); let \(F = \overline{F} \subset S \) be such that \(\mu(F) \neq 0 \), we can assume \(\mu(F) = 1 \), and let \(U \) be an open neighbourhood of \(F \) with \(\mu(S \setminus U) \leq \frac{1}{2} \).

By our Theorem and the assumptions \(F \) is a weak peak set so there is an \(f \) in \(A \) such that \(\|f\| \leq 1 \), \(f|_F = 1 \) and \(|f(s)| \leq \frac{1}{2} \text{var}(\mu) \) for \(s \in S \setminus U \). We have

\[
0 = \left| \int_S f d\mu \right| = \int_F f d\mu + \int_{U \setminus F} f d\mu + \int_{S \setminus U} f d\mu \\
\geq 1 - \frac{1}{2} \frac{|\mu(S \setminus U)|}{\text{var}(\mu)} > 0
\]

and this ends the proof.
References

Institute of Mathematics,
Warsaw University, PKiN,
00-901 Warsaw,
Poland.
EDITORIAL POLICY

The BULLETIN of the Australian Mathematical Society aims at quick publication of original research in all branches of mathematics. The Editors receive about twice as much material as can be published in the BULLETIN; many meritorious papers can, therefore, not be accepted. Manuscripts must be in their final, publishable form when submitted and papers which appear to need revision are unacceptable.

The BULLETIN is printed by a photo-offset process from a carefully prepared typescript. The type fonts and special symbols available are accordingly restricted.

Authors can assist the Editors and improve their papers' chances of acceptance by observing some simple rules:

1. Submit 3 clean, high quality copies of the typescript with generous spacing and margins. We prefer clear and full arguments, and especially clear and full motivation, to mathematical telegrams. Make the style attractive and avoid ugly abbreviations.
2. Avoid all mathematical symbols in the title (even harmless looking ones like R^n, L^p, A_n, *-algebra): they lead to unnecessary difficulties in the production processes, and are a great nuisance also after publication, in reviews, bibliographies, and so on. Arrange references alphabetically (by surname of first author), and ensure their accuracy: authors' names should appear as in the work quoted; and if this has not appeared yet or is not readily accessible to everybody (for example, a preprint), a photocopy of the title page of the copy you have used will be of great help to us.
3. Do not distribute your paper widely in preprint form as this damages its case for fast publication.

AUTHORS' ABSTRACTS

1. Each paper must include an abstract of not more than 200 words.
2. In writing abstracts, authors should bear in mind that these may be the only parts of the papers that are read.
3. The abstract should contain a brief but informative summary of the contents of the paper, but no inessential details.
4. The abstract should be self-contained, but may refer to the title.
5. The abstract should be written in completely connected sentences, not as a list of headings. Abbreviations should be avoided.
6. The abstract should be non-technical, and intelligible without reference to the full paper. Specific references (by number) to a section, proposition, equation, bibliographical item should be avoided.

SUBJECT CLASSIFICATION

Authors should include in their papers one or more classification numbers, following the 1980 Mathematics Subject Classification. Details of this scheme can be found in each Annual Index of Mathematical Reviews.

THE BULLETIN

The BULLETIN of the Australian Mathematical Society began publication in 1969. Normally two volumes of three numbers are published annually. The BULLETIN is published for the Australian Mathematical Society by the Australian Mathematical Publishing Association Inc. through the University of Queensland Press.
THE AUSTRALIAN MATHEMATICAL SOCIETY

President: R. S. Anderssen
Division of Mathematics and Statistics,
C.S.I.R.O., P.O. Box 1965,
Canberra City, A.C.T., 2601, Australia.

Secretary: W. R. Bloom
School of Mathematical and Physical Sciences,
Murdoch University,
Murdoch, W.A., 6153, Australia.

Treasurer: B. D. Jones
Department of Mathematics,
University of Queensland,
St Lucia, Queensland, 4067, Australia.

Associate Treasurer: D. G. Tacon
School of Mathematics,
University of New South Wales,
Kensington, N.S.W., 2033, Australia.

(These officers serve until May 1985)

Membership and correspondence
Applications for membership, notices of change of address or title or position, and
other correspondence, except as noted below, should be sent to the Secretary.
Members’ subscriptions and correspondence related to accounts should be sent to
the Associate Treasurer. Correspondence about the distribution of the Society’s
BULLETIN, GAZETTE and JOURNAL, and orders for back numbers should be sent
to the Treasurer.

Other publications of the Society
The JOURNAL of the Australian Mathematical Society began publication in 1959
and since 1975 has appeared in two series, Series A (Pure Mathematics and
Statistics) and Series B (Applied Mathematics). The Editors are:

(A) Dr T. E. Hall,
Department of Mathematics,
Monash University,
Clayton, Victoria 3168,
Australia.

(B) Professor W. E. Smith,
School of Mathematics,
University of New South Wales,
Kensington, N.S.W., 2033,
Australia.

The Australian Mathematical Society GAZETTE started publication in 1974, and
carries news items, mathematical articles of general interest, and articles on tertiary
mathematics teaching. Manuscripts for publication should be sent to the Editor:

Dr J. D. Gray
School of Mathematics,
University of New South Wales,
Kensington, N.S.W., 2033,
Australia.