INTO ISOMORPHISMS OF SPACES OF CONTINUOUS FUNCTIONS

KRZYSZTOF JAROSZ

ABSTRACT. If X and Y are locally compact Hausdorff spaces and T is a linear map from an extremely regular subspace of $C_0(X)$ into $C_0(Y)$ such that $||T||||T^{-1}|| < 2$, then X is a continuous image of a subset of Y.

Introduction. For a locally compact Hausdorff space X, we denote by $C_0(X)$ the Banach space of all continuous complex valued functions defined on X which vanish at infinity, equipped with a usual sup norm. In case X is compact, we write $C(X)$ instead of $C_0(X)$.

A well-known Banach-Stone theorem states that the existence of an isometry between the function spaces $C_0(X)$ and $C_0(Y)$ implies X and Y are homeomorphic.

D. Amir [1] and M. Cambern [3] independently generalized this theorem by proving that if $C_0(X)$ and $C_0(Y)$ are isomorphic under an isomorphism T satisfying $||T||||T^{-1}|| < 2$, then X and Y must also be homeomorphic.

A generalization of another type of the Banach-Stone theorem was given by W. Holsztyński [5]. He proved that if there exists a linear isometry of $C(X)$ into $C(Y)$ then X is a continuous image of a closed subset of Y.

In [2] Y. Benyamin found, for compact metric spaces, a common generalization of the theorem of Amir-Camber and Holsztyński. Namely he proved that if X is a compact metric space, $0 < \epsilon < 1$, and T is a linear homomorphism of $C(X)$ into $C(Y)$ satisfying $||f|| \leq ||Tf|| \leq (1 + \epsilon)||f||$ for all $f \in C(X)$, then first there is a continuous function φ from a closed subset Y_1 of Y onto X; second there is an isometry Φ of $C(X)$ into $C(Y)$ such that

$$\Phi(f)(y) = f \circ \varphi(y) \quad \text{for } y \in Y_1,$$

and

$$||\Phi - T|| \leq 3\epsilon.$$

An example given by Benyamin proves that the second part of his theorem in general does not hold for nonmetric spaces. The purpose of this note is to show that the first part of Benyamin's theorem is valid also for nonmetrizable spaces.

The result. According to [4], a closed linear subspace A of $C_0(X)$ is said to be extremely regular if for each x_0 in X, each neighbourhood U of x_0 and each $\epsilon > 0$, there is a function f in A such that:

1. $1 = f(x_0) = ||f||$;
2. $|f(x)| < \epsilon$ for all $x \in X - U$.

Theorem. Let X, Y be locally compact spaces and let T be a linear isomorphism of an extremely regular subspace A of $C_0(X)$ onto a closed linear subspace B of $C_0(Y)$.

Received by the editors February 18, 1983.
1980 Mathematics Subject Classification. Primary 46E15; Secondary 46E25.

© 1984 American Mathematical Society
0002-9939/84 $1.00 + .25 per page

373
If $|T||T^{-1}| = k < 2$ then there is a subset Y_1 of Y and a continuous function φ from Y_1 onto X. Moreover, if X is compact then φ can be extended to a continuous function $\bar{\varphi}$ from Y_1 onto X.

We divide the proof of the theorem into two lemmas, and we assume, without loss of generality, that $|T| = k$ and $|T^{-1}| = 1$.

Lemma 1. Assume A is an extremely regular subspace of $C_0(X)$. Then for each x_0 in X, each neighbourhood U of x_0 and each $\varepsilon > 0$ there is a function f in A such that:

1. $1 = f(x_0) = ||f||$;
2. $|f(x)| < \varepsilon$ for all $x \in X - U$;
3. $|f(x) - (\text{Re } f(x))^+| < \varepsilon$ for all x in X, where for a real number y we define

$$y^+ = \begin{cases} y & \text{if } y \geq 0, \\ 0 & \text{if } y \leq 0. \end{cases}$$

Proof. Fix x_0 in X, $\varepsilon > 0$ and an open neighbourhood U of x_0 and let n be a positive integer such that $1/n < \varepsilon/2$.

We shall define by induction a sequence $(f_k)_{k=1}^\infty \subset A$ and a descending sequence of neighbourhoods $(U_k)_{k=1}^\infty$ of the point x_0.

To this end we set $U_1 = U$ and let f_1 be any function from A such that $||f_1|| = 1 = f_1(x_0)$ and $|f_1(x)| < \varepsilon/2$ for all x in $X - U_1$. Assume we have define U_k and f_k; then

$$U_{k+1} = \{x \in U_k : |f_k(x) - 1| < \varepsilon/2\},$$

and as f_{k+1} we take any element of A such that $||f_{k+1}|| = 1 = f_{k+1}(x_0)$ and $|f_{k+1}(x)| < \varepsilon/2$ for all x in $X - U_{k+1}$. We define

$$f = \frac{1}{n} \sum_{k=1}^n f_k.$$

Points 1 and 2 of the lemma are evidently fulfilled. We shall check 3. If $x \in X - U_1$, then for all $k \in \mathbb{N}$, $|f_k(x)| < \varepsilon/2$ and, consequently, $|f(x)| < \varepsilon/2$, which gives 3. If $x \in U_1$, then denoting by k_0 the greatest positive integer not greater than n such that $x \in U_{k_0}$, we find

$$|f(x) - \frac{k_0 - 1}{n}| = \left| \frac{1}{n} \sum_{j=1}^{k_0-1} (f_j(x) - 1) + f_{k_0}(x) + \sum_{j=k_0+1}^n f_j(x) \right|$$

$$\leq \frac{1}{n} \left[\left(k_0 - 1 \right) \frac{\varepsilon}{2} + 1 + (n - k_0) \frac{\varepsilon}{2} \right] = \frac{n-1}{n} \frac{\varepsilon}{2} + \frac{1}{n} < \varepsilon,$$

which again gives 3.

For each $x \in X$ ($y \in Y$) let δ_x (δ_y) denote the evaluation map on A (on $C_0(Y)$); let μ_x (ν_y) be any regular Borel measure on Y (on X) such that

$$\mu_x(Tf) = f(x) \quad (\nu_y(f) = Tf(y)) \quad \text{for all } f \in A,$$

and

$$\text{var}(\mu_x) = ||(T^{-1})^* \delta_x|| \quad (\text{var}(\nu_y) = ||T^* \delta_y||).$$
Fix any positive number M such that $1/k > M > 1/2$, and for $x \in X$, let \tilde{S}_x be the set of all points $y \in Y$ such that $|\nu_y(\{x\})| \geq M ||T^* \delta_y||$, and S_x be the set of all points y from \tilde{S}_x such that $||\delta_y|_{TA}||$ (i.e. the norm of functional δ_y restricted to TA) is not less than $k/2$.

Notice that because $M > 1/2$ we have $\tilde{S}_{x_1} \cap \tilde{S}_{x_2} = \emptyset$ if $x_1 \neq x_2$.

Lemma 2. For each $x \in X$ we have $S_x \neq \emptyset$ and

(i) for any compact subset K of X the set $\bigcup_{x \in K} \tilde{S}_x$ is a closed subset of Y;

(ii) the function φ: $\bigcup_{x \in X} S_x \to X$: $\varphi(y) = x$, if $y \in S_x$, is continuous.

Proof. Let us first consider some general facts. If A is a closed subspace of $C_0(X)$, then any functional $F \in A^*$ can be extended, with the same norm, to a regular Borel measure μ_F on X. On the other hand, A can be regarded as a subspace of the space of continuous functions on A^* with the weak * topology, and any such measure μ_F can be regarded as a regular Borel measure defined on a closed subset of A^*. Notice that this is independent of the fact whether or not A separates points of the set X. Now let T be an isomorphism between two subspaces A and B of the spaces $C_0(X)$ and $C_0(Y)$, respectively. Regarding A and B in the above way, for any functional $F \in A^*$ we can first find a measure μ_G on $Y \subset B^*$ where $G = (T^{-1})^*(F)$ and then a measure ξ_G on $T^*(Y) \subset A^*$:

$$\xi_G(K) = \mu_G((T^{-1})^*(K))$$

for any Borel subset K of A^*.

The measure ξ_G represents the same functional F on A and $\text{var}(\xi_G) = \text{var}(\mu_G) = ||(T^{-1})^*(F)||$.

In the sequel we shall use the same notation for a function $f \in A \subset C_0(X)$ and for the corresponding continuous function on A^* if no misunderstanding is likely to occur.

We now return to our situation and put $F = \delta_{x_0}$. We get a measure $\xi_{x_0} = \xi_{(T^{-1})^* \delta_{x_0}}$ concentrated in $T^*(Y) \subset A^*$ such that

$$f(x_0) = \delta_{x_0}(f) = (T^{-1})^*(\delta_{x_0})(Tf) = \mu_{x_0}(Tf) = \xi_{x_0}(f)$$

for all $f \in A$, and

$$\text{var}(\xi_{x_0}) = ||(T^{-1})^*(\delta_{x_0})|| = \text{var}(\mu_{x_0}).$$

Fix $\epsilon > 0$. By the definition of μ_{x_0} we have

$$\mu_{x_0}(\{y \in Y: ||\delta_y|_{TA}|| < k/2\}) = 0,$$

so by regularity of μ_{x_0}, there is a compact subset Y' of $\{y \in Y: ||\delta_y|_{TA}|| > k/2\}$ such that $|\mu_{x_0}(Y - Y')| < \epsilon$. From (1) and (2) there exists, for any f in A such that $||f|| = 1 = f(x_0)$, an $F \in \text{supp} \xi_{x_0} \cap T^*(Y')$ with the property that $|F(f)| \geq 1 - 2\epsilon$.

Let a net $(U_{\alpha})_{\alpha \in \Gamma}$ constitute a neighbourhood basis at x_0 indexed in the obvious way, and let (f_α) be a net of functions from A obtained by Lemma 1, i.e. such that for all $\alpha \in \Gamma$:

1. $\|f_\alpha(x_0)\| = 1 = f_\alpha(x_0)$;
2. $\|f_\alpha(x)\| < \epsilon$ for all $x \in X - U_{\alpha}$;
3. $|f_\alpha(x) - (\text{Re } f_\alpha(x)) + | < \epsilon$ for all $x \in X$.

Let $F_\alpha = T^*(\delta_{y_\alpha})$ be any functional such that $y_\alpha \in Y'$ and

$$|F_\alpha(f)| \geq 1 - 2\epsilon.$$
Let us decompose the measure \(\nu_{y_0} \) as follows: \(\nu_{y_0} = \nu_1^1 + \nu_2^\alpha \), where \(\nu_1^1 = \nu_{y_0|U_\alpha} \), \(\nu_2^\alpha = \nu_{y_0|X - U_\alpha} \). We can assume the nets \((\nu_1^1) \) and \((\nu_2^\alpha) \) are weak * convergent to measures \(\nu_1^0 \) and \(\nu_2^0 \), respectively, and \((y_\alpha) \) converges to \(y_0 \in Y' \).

From (3) and the definition of \(\nu_{y_\alpha} \) and \(f_\alpha \) we have
\[
(4) \quad |\nu_{y_\alpha}(U_\alpha)| \geq 1 - 6\epsilon.
\]
Hence \(\nu_1^0 = \lambda_1^\delta_{x_0} \) where \(|\lambda_1| \geq 1 - 6\epsilon \). On the other hand the measure \(\nu_2^0 \) can be represented in the form
\[
\nu_2^0 = \nu_1^2 + \Delta \nu_2^0 \quad \text{where} \quad \Delta \nu_2^0(\{x_0\}) = 0.
\]
Hence
\[
\nu_0^0 = \nu_1^0 + \nu_2^0 = (\lambda_1 + \lambda_2)\delta_{x_0} + \Delta \nu_2^0.
\]
From (4),
\[
|\nu_\alpha(U_\alpha)| \geq 1 - 6\epsilon \geq \frac{1 - 6\epsilon}{k} (|\nu_\alpha(U_\alpha) + \text{var}(\nu_\alpha^2)).
\]
Hence, if \(1 - 6\epsilon \geq M \cdot k \) then
\[
(5) \quad |\lambda_1| \geq M(|\lambda_1| + \text{var}(\nu_2^0)) = M(|\lambda_1| + |\lambda_2| + \text{var}(\Delta \nu_2^0)).
\]
Notice now that, since \(1/2 < M < 1 \), for any \(\lambda_1, \lambda_2 \in \mathbb{C} \) we have
\[
(6) \quad |\lambda_1 + \lambda_2| - |\lambda_1| \geq M(|\lambda_1 + \lambda_2| - |\lambda_1| - |\lambda_2|).
\]
Adding (5) and (6) we get
\[
(7) \quad |\lambda_1 + \lambda_2| \geq M(|\lambda_1 + \lambda_2| + \text{var}(\Delta \nu_2^0)) \geq M \text{var}(\nu_0^0) \geq M \|T^* \delta_{y_0}\|.
\]
Now let \(\nu \) be any regular measure on \(X \) which represents \(T^* \delta_{y_0} \). Since \(A \) is an extremely regular subspace of \(C_0(X) \), we have \(|\nu(\{x_0\})| \geq |\lambda_1 + \lambda_2| \); hence by (7),
\[
|\nu^0(\{x_0\})| \geq M \|T^* \delta_{y_0}\|
\]
and this proves \(y_0 \in S_{x_0} \).

(i) Now fix a compact subset \(K \) of \(X \) and let \(y_\alpha \in S_{x_\alpha}, x_\alpha \in K \) and \(y_\alpha \rightarrow y_0 \) in \(Y \). Recall that \(\nu_{y_\alpha} \) denotes a regular Borel measure on \(Y \) which represents the functional \(T^* \delta_{y_\alpha} \) and is such that \(\text{var}(\nu_{y_\alpha}) = \|T^* \delta_{y_\alpha}\| \).

By our assumption
\[
(8) \quad \nu_{y_\alpha} = \lambda_\alpha \delta_{x_\alpha} + \Delta \nu_\alpha \quad \text{where} \quad |\lambda_\alpha| \geq M(|\lambda_\alpha| + \text{var}(\Delta \nu_\alpha)) \).
\]
Without loss of generality we can assume the nets \((\lambda_\alpha), (x_\alpha) \) and \((\Delta \nu_\alpha) \) are convergent, in appropriate topologies, to \(\lambda_0 \in \mathbb{C}, x_0 \in K \) and to a measure \(\Delta \nu_0 = \lambda' \delta_{x_0} + \rho \), where \(\rho(\{x_0\}) = 0 \), respectively.

From (8), we have
\[
|\lambda_0| \geq M(|\lambda_0| + |\lambda'| + \text{var}(\rho)) ;
\]

hence, as in the proof of previous part we get
\[
|\lambda_0 + \lambda'| \geq M(|\lambda_0 + \lambda'| + \text{var}(\rho)) .
\]
Next we get \(|\nu_{y_0}(\{x_0\})| \geq M \text{var}(\nu_{y_0}) \) and, hence, \(y_0 \in \bigcup_{x \in K} S_{x_\alpha} \).

(ii) Let \(y_\alpha \in S_{x_\alpha} \) for \(\alpha \in \Gamma \) and \(y_\alpha \rightarrow y_0 \in S_{x_\alpha} \). To prove the continuity of \(\varphi \) it is sufficient to show that \(x_\alpha \) is neither convergent to any \(x_1 \neq x_0 \) nor divergent to infinity (in the case \(X \) is noncompact).
Assume first that \(x_\alpha \to x_1 \neq x_0 \). We have

\[
\nu_{\lambda_0} = \lambda_\alpha \delta_{x_\alpha} + \Delta \nu_\alpha \quad \text{for} \quad \alpha \in \Gamma \cup \{0\} \cup \{1\},
\]

where \(|\lambda_\alpha| \geq M(\lambda_\alpha) + \text{var}(\Delta \nu_\alpha)\). Assume without loss of generality that \(\lambda_\alpha \to \lambda' \), \(\Delta \nu_\alpha \to \Delta \nu' \). Since \(T^*\delta_{y_0} \) tends to \(T^*\delta_{y_0} \) in weak * topology, it follows that the measures \(\lambda_\alpha \delta_{x_\alpha} + \Delta \nu' \) and \(\lambda_0 \delta_{x_0} + \Delta \nu_0 \) represent the same functionals on \(\Lambda \), but this is impossible since \(|\lambda_1| + |\lambda_0| > \text{var}(\Delta \nu_1) + \text{var}(\Delta \nu_0)\), and \(\Lambda \) is extremely regular.

Now assume \(X \) is noncompact and \(x_\alpha \) is divergent to infinity, and use the same notation as above. The net \(\lambda_\alpha \delta_{x_\alpha} \) tends to zero so the measure \(\Delta \nu' \) represents the functional \(T^*\delta_{y_0} \), but

\[
\text{var}(\Delta \nu') \leq \lim \text{var}(\Delta \nu_\alpha) < k/2,
\]

and this contradicts our assumption

\[
S_{x_0} \subset \{ y \in Y : \|\delta_{y TA}\| > k/2 \}.
\]

To end the proof of the theorem put

\[
\bar{\varphi} : \bigcup_{x \in X} \bar{S}_x \to X : \bar{\varphi}(y) = x \quad \text{if} \quad y \in \bar{S}_x.
\]

For a compact space \(X \) the inclusion \(\bar{Y}_1 \subset \bigcup_{x \in X} \bar{S}_x \) and the continuity of \(\bar{\varphi} \) are immediate consequences of Lemma 2(i).

Remark. The assertion of the Theorem cannot be strengthened to the effect "\(Y_1 \) is a closed subset of \(Y \)". A simple counterexample is obtained by taking \(A \) to be the space \(c_0 \) of all infinite sequences tending to zero, \(C_0(Y) \) the space \(c \) of all convergent sequences and \(T \) the natural isometric embedding of \(c_0 \) into \(c \).

References