Operators shrinking the Arveson spectrum

A. R. Villena
joint work with J. Alaminos and J. Extremera

Departamento de Análisis Matemático
Universidad de Granada

BANACH ALGEBRAS 2009
STEFAN BANACH INTERNATIONAL MATHEMATICAL CENTER
JULY 14-24, 2009
BEDLEWO, POLAND
Let G be a locally compact abelian group, X be a complex Banach space, and $\tau: G \to \text{inv}(\mathcal{B}(X))$ be a bounded and strongly continuous group homomorphism. For every $x \in X$, the Arveson spectrum of x is defined as

$$\text{sp}(x) = \left\{ \gamma \in \hat{G}: \hat{f}(\gamma) = 0 \text{ for each } f \in L^1(G) \text{ with } \int_G f(t)\tau(t)x dt = 0 \right\}.$$
Example (Support of the Fourier transform)

Let G be a locally compact abelian group and let τ be the so-called *regular representation* of G on $L^1(G)$,

$$\tau: G \to B(L^1(G)), \quad [\tau(t)f](s) = f(t^{-1}s) \quad (s, t \in G, \, f \in L^1(G)).$$

Then

$$\text{sp}(f) = \text{supp} \hat{f} \quad (f \in L^1(G)).$$
Example (Local spectrum of an operator)

Let X be a complex Banach space. Given an operator $T \in \mathcal{B}(X)$, the local resolvent set $\rho(T, x)$ of T at the point $x \in X$ is defined as the union of all open subsets U of \mathbb{C} for which there is an analytic function $f : U \to X$ which satisfies

$$(T - z)f(z) = x$$ for each $z \in U$.

The local spectrum $\sigma(T, x)$ of T at x is then defined as

$$\sigma(T, x) = \mathbb{C} \setminus \rho(T, x).$$

1. Let $T \in \mathcal{B}(X)$ be a doubly power bounded operator and consider

$$\tau : \mathbb{Z} \to \mathcal{B}(X), \quad \tau(k) = T^k \quad (k \in \mathbb{Z}).$$

Then $\text{sp}(x) = \sigma(T, x)$ \quad ($x \in X$).

2. Let $T \in \mathcal{B}(X)$ be a hermitian operator and consider the one-parameter group

$$\tau : \mathbb{R} \to \mathcal{B}(X), \quad \tau(t) = \exp(itT) \quad (t \in \mathbb{R}).$$

Then $\text{sp}(x) = \sigma(T, x)$ \quad ($x \in X$).
Example (Support of a spectral measure)

Let $A : \mathcal{D} \subset H \to H$ be a selfadjoint operator on a Hilbert space H. Then there is a projection-valued measure \mathcal{E} on \mathbb{R} such that

$$A = \int_{-\infty}^{+\infty} t \, d\mathcal{E}(t).$$

For every $x \in H$, the map

$$\Delta \mapsto \|\mathcal{E}(\Delta)x\|^2$$

defines a measure \mathcal{E}_x on the Borel subsets of \mathbb{R}.

Consider the one-parameter group

$$\tau : \mathbb{R} \to \mathcal{U}(H), \quad \tau(t) = \exp(itA) \quad (t \in \mathbb{R}).$$

Then

$$\text{sp}(x) = \text{supp}(\mathcal{E}_x) \quad (x \in H).$$
In many different contexts we find out operators $\Phi: X \rightarrow Y$, where X and Y are complex Banach spaces, which shrink the Arveson spectrum in the sense that

$$\text{sp}(\Phi x) \subset \text{sp}(x) \quad (x \in X)$$

for appropriate representations τ_X and τ_Y of a locally compact abelian group G on X and Y, respectively.

A typical example of operator Φ shrinking the spectrum is the one intertwining τ_X and τ_Y

$$\Phi \circ \tau_X(t) = \tau_Y(t) \circ \Phi \quad (t \in G).$$

The standard problem consists in determining whether every operator shrinking the Arveson spectrum necessarily intertwines the representations.
Suppose that $\Phi : X \to Y$ shrinks the Arveson spectrum.

Pick $t \in G$ and $x \in X$. We define a continuous bilinear map

$$
\varphi : A(\mathbb{T}) \times A(\mathbb{T}) \to Y, \quad \varphi(f, g) = \sum_{j, k \in \mathbb{Z}} \hat{f}(j) \hat{g}(k) \tau_Y(t^j) \left(\Phi \left(\tau_X(t^k)x \right) \right) (f, g \in A(\mathbb{T})).
$$

We check that

$$
\text{sp}(\varphi(f, g)) \subset \left\{ \gamma \in \text{sp}(x) : \gamma(t) \in \text{supp}(f) \cap \text{supp}(g) \right\}.
$$
Our approach to the problem:
Disjointness vanishing bilinear maps on $A(\mathbb{T})$

Accordingly, φ satisfies the property

$$ f, g \in A(\mathbb{T}), \text{ supp}(f) \cap \text{ supp}(g) = \emptyset \ \Rightarrow \ \varphi(f, g) = 0. $$

The bilinear map φ induces a continuous linear operator

$$ \psi: A(\mathbb{T}^2) \to X, \quad \psi(f) = \sum_{j,k \in \mathbb{Z}} \hat{f}(j,k) \varphi(z^j, z^k) \quad \left(f \in A(\mathbb{T}^2) \right) $$

with the property that

$$ f \in A(\mathbb{T}^2), \text{ supp}(f) \cap \{ (z, z) : z \in \mathbb{T} \} = \emptyset \ \Rightarrow \ \psi(f) = 0. $$

At this point the synthesis is coming into the scene!
The set Δ is a set of synthesis for $A(\mathbb{T}^2)$. This means that every function $f \in A(\mathbb{T}^2)$ vanishing at Δ can be approximated by a sequence (f_n) in $A(\mathbb{T}^2)$ with the property that f_n vanishes on a neighborhood of Δ.

We then consider the function $f \in A(\mathbb{T}^2)$ defined by

$$f(z, w) = z - w \quad (z, w \in \mathbb{T})$$

and there exists a sequence (f_n) in $A(\mathbb{T}^2)$ with

$$f = \lim f_n \quad \text{and} \quad \text{supp}(f_n) \cap \Delta = \emptyset \quad (n \in \mathbb{N}).$$

Accordingly, we have

$$0 = \lim \Psi(f_n) = \Psi(f) = \underbrace{\varphi(z, 1)}_{\tau_Y(t)(\Phi x)} - \underbrace{\varphi(1, z)}_{\Phi(\tau_X(t)x)}.$$
Our contribution

Theorem

Let G be a locally compact abelian group. Let X and Y be Banach spaces and let $\tau_X : G \to B(X)$ and $\tau_Y : G \to B(Y)$ bounded and strongly continuous group homomorphisms. If $\Phi \in B(X, Y)$ shrinks the Arveson spectrum, i.e.

$$\text{sp}(\Phi x) \subset \text{sp}(x) \quad (x \in X),$$

then Φ intertwines τ_X and τ_Y, i.e.

$$\Phi \circ \tau_X(t) = \tau_Y(t) \circ \Phi \quad (t \in G).$$
The secret of our success

Theorem

Let

\[\varphi: A(\mathbb{T}) \times A(\mathbb{T}) \to X \]

be a continuous bilinear map into some Banach space \(X \) with the property that

\[f, g \in A(\mathbb{T}), \quad \text{supp}(f) \cap \text{supp}(g) = \emptyset \implies \varphi(f, g) = 0, \]

then

\[\varphi(z, 1) = \varphi(1, z). \]
The theory of the Arveson spectrum still works for a **non-quasianalytic** representation $\tau : G \to B(X)$. This means that the weight function ω given by

$$\omega(t) = \max\{1, \|\tau(t)\|\} \quad (t \in G)$$

satisfies the **Beurling-Domar condition**

$$\sum_{k=-\infty}^{+\infty} \frac{\log \omega(t^k)}{1 + k^2} < \infty \quad (t \in G).$$

For the definition of the Arveson spectrum of τ at a point $x \in X$ we now replace the group algebra $L^1(G)$ by the weighted group algebra $L^1(G, \omega)$.

$$\text{sp}(x) = \left\{ \gamma \in \hat{G} : \hat{f}(\gamma) = 0 \text{ for each } f \in L^1(G, \omega) \text{ with } \int_G f(t)\tau(t)xdt = 0 \right\}.$$
Our theorem may fail in the case where the representation is unbounded.

Example

Consider the representations $\tau_1, \tau_2 : \mathbb{Z} \to \mathcal{B}(\mathbb{C}^2)$ given by

$$\tau_1(k) = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}^k$$
and
$$\tau_2(k) = l_{\mathbb{C}^2} \quad (k \in \mathbb{Z}).$$

Then

$$\text{sp}_{\tau_2}(x) \subset \text{sp}_{\tau_1}(x) \quad (x \in \mathbb{C}^2)$$

and

$$l_{\mathbb{C}^2} \circ \tau_1(k) \neq \tau_2(k) \circ l_{\mathbb{C}^2} \quad (k \neq 0).$$

In this case we have

$$\sqrt{1 + k^2} \leq \|\tau_1(k)\| \leq \sqrt{2 + k^2} \quad (k \in \mathbb{Z}).$$
For dealing with representations with polynomial growth we are required to involve disjointness vanishing bilinear maps

\[\varphi : A_\alpha(\mathbb{T}) \times A_\alpha(\mathbb{T}) \to X \]

on the weighted Fourier algebra

\[A_\alpha(\mathbb{T}) = \left\{ f \in C(\mathbb{T}): \|f\| = \sum_{k \in \mathbb{Z}} \left| \hat{f}(k) \right| (1 + |k|)^\alpha < \infty \right\} \]

for some \(\alpha \geq 0 \).
Theorem

Let

\[\varphi : A_\alpha(\mathbb{T}) \times A_\alpha(\mathbb{T}) \to X \]

be a continuous bilinear map into some Banach space \(X \) with the property that

\[f, g \in A_\alpha(\mathbb{T}), \quad \text{supp}(f) \cap \text{supp}(g) = \emptyset \quad \Rightarrow \quad \varphi(f, g) = 0. \]

Then

\[
\sum_{i=0}^{N} \binom{N}{i} (-1)^i \varphi(z^{N-i}, z^i) = 0
\]

for each \(N > 2\alpha \).

This time, \(\varphi \) gives rise to a continuous linear operator \(\Psi : A_{2\alpha}(\mathbb{T}^2) \to X \). However, the diagonal \(\Delta \) may fail to be a set of synthesis for \(A_{2\alpha}(\mathbb{T}^2) \) because of the weight. We are thus required to take care of the function \(f \) at which we intend to apply \(\Psi \). The so-called Beurling-Pollard type theorems assert, roughly speaking, that a function \(f \) admits synthesis if its growth is appropriate. We show that this is just the case for the function \(f(z, w) = (z - w)^N \).
An improvement to our contribution

Theorem

Let G be a locally compact abelian group. Let X and Y be Banach spaces and let $\tau_X : G \to \mathcal{B}(X)$ and $\tau_Y : G \to \mathcal{B}(Y)$ strongly continuous group homomorphisms with polynomial growth, i.e.

$$\|\tau_Y(t^k)\|, \|\tau_X(t^k)\| = O(|k|^{\alpha}) \text{ as } |k| \to \infty$$

for some $\alpha \geq 0$. If $\Phi \in \mathcal{B}(X, Y)$ is such that

$$\text{sp}(\Phi x) \subset \text{sp}(x) \ (x \in X),$$

then

$$\sum_{i=0}^{N} \binom{N}{i} (-1)^i \tau_Y(t^{N-i}) \circ \Phi \circ \tau_X(t^i) = 0 \quad (t \in G),$$

whenever $N > 2\alpha$.
Applications:
Translation invariant operators

Corollary

Let G be a locally compact abelian group. Then $T : L^1(G) \to L^1(G)$ is translation invariant if and only if

$$\text{supp}(\hat{Tf}) \subset \text{supp}(\hat{f}) \quad (f \in L^1(G)).$$

Proof.

We consider the regular representation of G on $L^1(G)$. Then

$$\text{supp}(\hat{Tf}) \subset \text{supp}(\hat{f}),$$

with

$$\text{sp}(Tf) \subset \text{sp}(f),$$

and therefore T shrinks the Arveson spectrum.

\qed
Applications:
Determining operators through the spectrum

Corollary (Colojoară-Foiaş, 1968)

Let X be a complex Banach space and $S, T \in \mathcal{B}(X)$ be invertible operators with polynomial growth. Suppose that

$$\sigma(S, x) \subset \sigma(T, x) \quad \forall x \in X.$$

Then

$$\sum_{i=0}^{N} \binom{N}{i} (-1)^i T^{N-i} S^i = 0,$$

whenever $N > 2\alpha$, where α is such that

$$\|S^k\|, \|T^k\| = O(|k|^\alpha) \text{ as } |k| \to \infty$$

Consequently,

1. If S and T are doubly power bounded, then $S = T$.
2. If S and T commute, then $(S - T)^N = 0$.
Proof.

We consider the representations $\tau_S, \tau_T: \mathbb{Z} \rightarrow \mathcal{B}(X)$ given by $\tau_S(k) = S^k$ and $\tau_T(k) = T^k$ ($k \in \mathbb{Z}$). Then

$$
\sigma(S, x) \subset \sigma(T, x),
$$

$$
\text{sp}_{\tau_S}(x) \subset \text{sp}_{\tau_T}(x),
$$

which shows that the identity operator $I_X: X \rightarrow X$ shrinks the spectrum. Consequently,

$$
\sum_{i=0}^{N} \binom{N}{i} (-1)^i \underbrace{\tau_T(N - i) I_X \tau_S(i)}_{T^{N-i}S^i} = 0 \quad (t \in G),
$$
Corollary (I. Gelfand, 1941)

Let T be a bounded linear operator on a complex Banach space X such that $\sigma(T) = \{1\}$. If

$$\sup_{k \in \mathbb{Z}} \| T^k \| < \infty,$$

then

$$T = I_X.$$

Example

It should be pointed out that Gelfand theorem fails in the case where the operator is not doubly power bounded. As a matter of fact, the operator $T \in B(\mathbb{C}^2)$ corresponding to the matrix

$$\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$$

is different from the identity operator and nevertheless $\sigma(T) = \{1\}$. In this case

$$T^k \equiv \begin{pmatrix} 1 & k \\ 0 & 1 \end{pmatrix} \quad \text{and} \quad \sqrt{1 + k^2} \leq \| T^k \| \leq \sqrt{2 + k^2} \quad \forall k \in \mathbb{Z}.$$
Corollary (E. Hille, 1944)

Let T be a bounded linear operator on a complex Banach space X such that $\sigma(T) = \{1\}$. If

$$\|T^k\| = O(|k|^n) \text{ as } |k| \to \infty$$

for some $n \geq 0$, then

$$(T - I_X)^N = 0.$$ for each integer N with $N > n$.

Example

It should be pointed out that both Gelfand and Hille theorems fail for comparing the given operator with an operator different from the identity. Indeed, let $S, T \in B(\mathbb{C}^2)$ be the operators with matrices

$$\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \text{ and } \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix},$$

respectively. Then

$$\sigma(T) = \sigma(S) = \{1\}$$

and $T - S$ is far from being nilpotent.
Theorem (Local version of Gelfand-Hille theorem)

Let X be a complex Banach space and let T be an invertible operator on X such that $\|T^k\| = O(|k|^{\alpha})$ as $|k| \to \infty$ for some $\alpha \geq 0$. If $x \in X$ is such that

$$\sigma(T, x) = \{\lambda\}$$

for some $\lambda \in \mathbb{C}$, then

$$(T - \lambda I_X)^N x = 0$$

whenever $N \in \mathbb{N}$ is such that $N > 2\alpha$. In particular, if T is doubly power bounded, then

$$Tx = \lambda x.$$
Proof.
First of all, it should be pointed out that
\[\lambda \in \sigma(T,x) \subset \sigma(T) \subset \mathbb{T}. \]

We define \(\varphi : A_\alpha(\mathbb{T}) \times A_\alpha(\mathbb{T}) \rightarrow X \) by
\[
\varphi(f,g) = g(\lambda) \sum_{k \in \mathbb{Z}} \hat{f}(k) T^k x.
\]

Then \(\varphi \) is a disjointness vanishing continuous bilinear map. Our seminal result gives
\[
0 = \sum_{i=0}^{N} \binom{N}{i} (-1)^i \varphi(z^{N-i}, z^i)\underbrace{\lambda^i T^{N-i} x}_{\lambda^i T^{N-i} x} = (T - \lambda I_x)^N x.
\]
Theorem (An improvement of the Colojoară-Foiaş theorem)

Let X be a complex Banach space, $S, T_1, \ldots, T_n, \in \mathcal{B}(X)$ invertible operators with polynomial growth with the property that

$$
\sigma(S, x) \subset \bigcup_{j=1}^{n} \sigma(T_j, x) \quad \forall x \in X
$$

and that T_1, \ldots, T_n are pairwise commuting Then there exists $N \in \mathbb{N}$ such that

$$
C(S, T_1)^N \cdots C(S, T_n)^N I_X = 0.
$$

Here the intertwiner $C(S, T)$ of $S, T \in \mathcal{B}(X)$ is defined by

$$
C(S, T) : \mathcal{B}(X) \to \mathcal{B}(X), \quad C(S, T)A = SA - AT \quad \forall A \in \mathcal{B}(X).
$$
Theorem (A. C. Zaanen, 1975)

Let Ω be a locally compact Hausdorff space and let $T : C_0(\Omega) \to C_0(\Omega)$ be a bounded linear operator with the property that

$$f \in C_0(\Omega), \quad E \subset \Omega, \quad f = 0 \text{ on } E \Rightarrow Tf = 0 \text{ on } E.$$

Then there exists $g \in C_b(\Omega)$ such that

$$Tf = fg \quad \forall f \in C_0(\Omega).$$
Theorem (Our non-commutative version)

Let A be a (unital) C^*-algebra and let $T : A \rightarrow A$ be a bounded linear operator with the property that
\[\forall x \in A, \quad p x = 0 \Rightarrow p T x = 0. \]

Then there exists $a \in A$ such that
\[T x = x a \quad \forall x \in A. \]
Proof.

For every unitary $u \in A$, the map $\varphi : A(\mathbb{T}) \times A(\mathbb{T}) \to A$ defined by

$$\varphi(f, g) = \sum_{j, k \in \mathbb{Z}} \hat{f}(j) \hat{g}(k) u^j T(u^k)$$

is disjointness vanishing. This entails that

$$T(u) = u T(1).$$

Since A is generated by the unitaries, it follows that

$$T(x) = x T(1) \quad \forall x \in A.$$
If we remove the requirement of A being unital, then the theorem still works though the element a defining the operator T lies in $\mathcal{M}(A)$, the multiplier algebra of A (i.e., the largest C^*-algebra containing A as an essential ideal).

- Of course, if A is unital, then $\mathcal{M}(A) = A$.
- If $A = C_0(\Omega)$, then $\mathcal{M}(A) = C_b(\Omega)$.
- If $A = \mathcal{K}(H)$, then $\mathcal{M}(A) = \mathcal{L}(H)$.

A. R. Villena (Granada)
Operators shrinking the Arveson spectrum
Banach Algebras 2009 28 / 31
Theorem (A. C. Zaanen, 1975)

Let \((\Omega, \Sigma, \mu)\) be a \(\sigma\)-finite measure space, \(1 \leq p \leq \infty\), and let \(T : L^p(\mu) \to L^p(\mu)\) be a bounded linear operator with the property that

\[
f \in L^p(\mu), \ E \in \Sigma, \ f = 0 \ a.e. \ on \ E \ \Rightarrow \ Tf = 0 \ a.e. \ on \ E.
\]

Then there exists \(g \in L^\infty(\mu)\) such that

\[
Tf = fg \quad \forall f \in L^p(\mu).
\]
Theorem (Our noncommutative version)

Let \mathcal{M} be a von Neumann algebra with a (normal semifinite faithful) trace τ, $1 \leq p \leq \infty$, and let $T : L^p(\mathcal{M}, \tau) \to L^p(\mathcal{M}, \tau)$ be a bounded linear operator with the property that

$$x \in L^p(\mathcal{M}, \tau), \ p \text{ projection in } \mathcal{M}, \ px = 0 \implies pTx = 0.$$

Then there exists $a \in \mathcal{M}$ such that

$$Tx = xa \ \forall x \in L^p(\mathcal{M}, \tau).$$

- Let $\mathcal{M} = L^\infty(\mu)$. Then integration with respect to μ gives a n.s.f. trace and $L^p(\mathcal{M}) = L^p(\mu)$ ($1 \leq p \leq \infty$).
- Let $\mathcal{M} = \mathcal{L}(H)$ and τ the usual trace on $\mathcal{L}(H)$. Then $L^p(\mathcal{M})$ is the Schatten class $S^p(H)$ ($1 \leq p < \infty$).
Applications:

Determining observables in quantum mechanics through the support

1. Every physical observable in quantum mechanics is mathematically represented by a selfadjoint operator.

2. The outcome of a measurement of an observable is of statistical nature. The value obtained in a measurement of the observable A on the state ψ is a random variable $\hat{A}\psi$ whose probability distribution is given by the spectral measure \mathcal{E}_{ψ} of A at ψ, so that the probability to obtain a value in $\Delta \subset \mathbb{R}$ as the result of this measure is given by

$$
\mathbb{P}[\hat{A}\psi \in \Delta] = \|\mathcal{E}(\Delta)\psi\|^2.
$$

Corollary

*Let A and B be observables on a quantum physical system with the property that

$$
\mathbb{P}[\hat{A}\psi \in \Delta] = 1 \Rightarrow \mathbb{P}[\hat{B}\psi \in \Delta] = 1.
$$

Then $A = B$.***