The James–Schreier Space

Alistair Bird

(Joint work with Niels Laustsen)

University of Lancaster, UK

Będlewo 17th July 2009
In this talk: $x = (\alpha_i) \subset \mathbb{R}^\mathbb{N}$;

$$\nu_p(x, A) := \left(\sum_{n \in A} |\alpha_n|^p\right)^{1/p}$$

Schreier norm: $\|x\|_{S_p} := \sup\{\nu_p(x, A) : A \subseteq \mathbb{N} \text{ admissible}\}$

$$\mu_p(x, A) := \left(\sum_{j=1}^{k} |\alpha_{n_j} - \alpha_{n_{j+1}}|^p\right)^{1/p}$$

James norm: $\|x\|_{J_p} := \sup\{\mu_p(x, A) : A \subseteq \mathbb{N}\}$

James–Schreier norm: $\|x\|_{V_p} := \sup\{\mu_p(x, A) : A \subseteq \mathbb{N} \text{ permissible}\}$
Definitions

Two ways of defining J_p:

Definition 1
Let J_p be completion of c_{00} with respect to the J_p norm.

Definition 2
Let J_p be those sequences in c_0 which have finite J_p norm.

These two definitions describe the same space as

$$\|(I - P_n)x\|_{J_p} \to 0 \iff \|x\|_{J_p} < \infty,$$

that is, the unit vectors (e_i) are a Schauder basis of J_p in Definition 2.
Definitions

Definition - V_p

Let V_p be completion of c_{00} with respect to the $\| \cdot \|_{V_p}$-norm.

Definition - W_p

Let W_p be those sequences in c_0 which have finite $\| \cdot \|_{V_p}$-norm.

Here, the spaces V_p and W_p are not equal or isomorphic.

Equivalent Definition - V_p

Let V_p to be the closure of the linear span of the basic sequence (e_i) in W_p with respect to the $\| \cdot \|_{V_p}$-norm.

These two definitions of V_p are trivially equivalent. However, unlike the James space, now the basic sequence (e_i), the basis by definition, of V_p, does not span W_p.
Similarly for the Schreier space:

Definition - \(Z_p \)

Let \(Z_p \) be those sequences in \(c_0 \) which have finite \(\| \cdot \|_{S_p} \)-norm.

Definition - \(S_p \)

Let \(S_p \) to be the closure of the linear span of the basic sequence \((e_i)\) in \(Z_p \) with respect to the \(S_p \) norm.

e.g. \((1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \ldots)\) has finite \(\| \cdot \|_{S_1} \)-norm, so is in \(Z_1 \), but is not in \(S_1 \).

Claim: \(Z_p \) is the second dual of the Schreier space \(S_p \).
Let \((b_n)\) be a basis for a Banach space \(X\).

<table>
<thead>
<tr>
<th>Definition and Theorem</th>
</tr>
</thead>
<tbody>
<tr>
<td>Let ((f_n)) be the sequence of coordinate functionals for ((b_n)), that is, (f_n : \sum \alpha_mb_m \mapsto \alpha_n); then each (f_n) is bounded.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>A basis ((b_n)) is shrinking if and only if the coordinate functionals ((f_n)) are a basis for (X^*).</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Proposition</th>
</tr>
</thead>
<tbody>
<tr>
<td>For (p > 1) the unit vectors ((e_i)) are a shrinking basis for (V_p).</td>
</tr>
</tbody>
</table>
Define the natural map $\kappa : V_p \rightarrow V_{p}^{**}$ by $\kappa(x) : f_i \mapsto x_i$.

The shrinking basis for V_p allows us to construct an isometric isomorphism from V_{p}^{**} to

$$X_{V_p} := \left\{(\alpha_n) \subseteq \mathbb{C}^{\mathbb{N}} : \sup_{m} \left\| \sum_{n=1}^{m} \alpha_n e_n \right\|_{V_p} < +\infty \right\} \cong W_p \oplus \mathbb{C}1.$$
The James–Schreier Banach Algebra

For $1 \leq p < \infty$ the space X_{V_p} is a commutative *-algebra under the norm $\|\cdot\|_{V_p}$ equipped with pointwise multiplication and pointwise complex conjugation as involution, and has separately continuous product.

The Banach space X_{V_p} is a commutative Banach *-algebra with identity $e_0 = (1, 1, \ldots)$ under the $\|\cdot\|_{V_p}$-norm equipped with pointwise multiplication.

W_p is a *-subalgebra of X_{V_p}.

V_p is a *-ideal of W_p and X_{V_p}.
We define χ_n to be $\sum_{i=1}^{n} e_i = (1, 1, \ldots, 1, 0, \ldots)$. The sequence (χ_n) is a bounded approximate identity of projections of $\|\cdot\|_{V_p}$-norm 1 in the Banach *-algebra V_p, and they are contained in c_{00}.

The commutative Banach *-algebra V_p is weakly amenable, but not amenable.

V_p is Arens regular. Hence, the multiplier algebra of V_p, $(V_p^{**}, \square), X_{V_p}, W_p \oplus \mathbb{C}1$ are all isometrically isomorphic.
James’ Theorem - 1950

A Banach space with an unconditional basis, is reflexive if and only if it has no embedded copies of \(c_0 \) or \(l_1 \).

Corollary

The James space has no copies of \(c_0 \) or \(l_1 \), but is not reflexive. So \(J_p \) has no unconditional basis.

But the James–Schreier space, \(V_p \) does contain copies of \(c_0 \)—it is \(c_0 \)-saturated! So a different approach is necessary.
A Banach space X has Pełczyński’s property (u) if for all weak Cauchy sequences $(x_n) \subset X$ there exists a sequence $(y_n) \subset X$ such that for all $f \in X^*$

$$\left\langle x_n - \sum_{i=1}^{n} y_i, f \right\rangle \to 0 \text{ as } n \to \infty$$

and $\sum_{n=1}^{\infty} |\left\langle y_n, f \right\rangle|$ is convergent.
Pełczyński’s Property (u)

Reminder: X has Pełczyński’s property (u) if for all weak Cauchy sequences $(x_n) \subset X$ there exists a weakly unconditionally convergent (WUC) series $\sum_{n=1}^{\infty} y_n$ such that $(x_n - \sum_{i=1}^{n} y_i)_{n \in \mathbb{N}}$ is weakly null.

Every subspace of a space with Pełczyński’s property (u) also has Pełczyński’s property (u).

Every Banach space with an unconditional basis has property (u). In particular c_0 and S_p have it.

To show a Banach space does not have an unconditional basis it is enough to show it doesn’t have property (u).
Pełczyński’s Property (u) - James Space

Theorem - Bessaga and Pełczyński

Every weak unconditionally convergent (WUC) series in a Banach space X is unconditionally convergent if and only if X contains no copy of c_0.

Proposition: J_p does not have Pełczyński’s property (u).

Proof (by contradiction):
- Assume that property (u) holds.
- Then (χ_n) is weakly Cauchy in J_p and has no weak limit as $e_0 = (1, 1, \ldots) \in J_p^{**} \setminus J_p$.
- So there is sequence $(y_n) \subset J_p$ with $\sum_{n=1}^{\infty} y_n$ WUC such that $\chi_n - \sum_{i=1}^{n} y_n \rightharpoonup 0$.
- If $\sum_{n=1}^{\infty} y_n$ converges unconditionally then it must do so to $e_0 = (1, 1, \ldots)$, but this is not in J_p.
- By the Theorem above, J_p contains c_0. Contradiction!
Pełczyński’s Property (u)

This proof still depends on J_p not containing copies of c_0; so a new idea is needed for a successful proof. Instead of going for an abstract approach, we can view the proof as a simple game with concrete sequences:

1. We supply a weak Cauchy sequence (x_n).
2. Our opponent counters with a sequence (y_n) such that $(x_n - \sum_{i=1}^{n} y_i)_{n \in \mathbb{N}}$ is weakly null.
3. We win if we can find an $f \in V_p^*$ such that $\sum_{n=1}^{\infty} |\langle y_n, f \rangle|$ is divergent. If none exists, we lose.

If we can show that a winning strategy exists for us, this proves that V_p does not have Pełczyński’s property (u).
As V_p has a shrinking basis for $p > 1$, a sequence is weak Cauchy if and only if it is bounded and $(\langle x_n, f_k \rangle)_{n \in \mathbb{N}}$ converges for all k.

If (x_n) is a weak Cauchy sequence that weakly converges then the conditions for Pełczyński’s Property (u) to hold are trivially satisfied.

So we need (x_n) not weakly convergent in V_p.

A natural candidate for our sequence is, again, the bounded approximate identity $x_n = \chi_n$.
As V_p is a vector subspace of c_0, if (x_n) is weakly Cauchy in V_p, then it is in c_0 too. Hence for all $f \in l_1 = c_0^*$, the sum $\sum_{n=1}^{\infty} |\langle y_n, f \rangle|$ converges for all possible returned sequences (y_n).

To have any chance of winning, we must find $f \in V_p^* \setminus l_1$.

A candidate functional, not defined on l_1:

$$\sum_n \frac{1}{n} f_n \notin V_p^*.$$

Evaluation against χ_n gives

$$\left\langle \chi_n, \sum_k \frac{1}{k} f_k \right\rangle = \sum_{k=1}^{n} \frac{1}{k} \to \infty$$
Choosing $x_n = \chi_n$, forces (y_n) to have weights in each coordinate eventually summing to 1. We want to choose f that picks out these large weights.

- Sum of alternating harmonic series converges

$$\sum_n \frac{(-1)^n}{n} = -\log 2,$$

but its absolute values, the harmonic series diverges

$$\sum_n \frac{1}{n} = \infty.$$

- We do have

$$\xi := \sum_n \frac{(-1)^n}{n} f_n \in V_p^*.$$
Pełczyński’s Property (u) - Match Point

Want to show that

$$\sum |\langle y_m, f \rangle| \quad (\star)$$

diverges for some choice of f.

- If $y_n = e_n$ then we win with ξ as defined.
- If faced with a block basic sequence

$$y_n = \sum_{i=\sigma(n)}^{\sigma(n+1)-1} \alpha_i e_i,$$

(with increasing $\sigma(n)$), then we win by playing:

$$\xi^\sigma := \sum_{n \in \mathbb{N}} \frac{(-1)^n}{n} f_{\sigma(n)} \in V^*_p.$$

- We can ignore any terms of (y_n) and prove that for a subsequence, (\star) diverges.
- Add terms and show sum diverges. ($|a| + |b| \geq |a + b|$)
We aim to exploit this fact by summing consecutive terms \(y_n \) to construct an ’approximate block basic sequence’ \((z_n)\), with small weight on the initial co-ordinates and tail, and approximately one on the non-overlapping ’blocks’.

- Approximate blocks: \((z_n)\)
- Perfect blocks: \((u_n)\)
- These are (in some sense) close:

\[
\|u_n - z_n\| < \epsilon.
\]

Choosing these approximate blocks is a delicate process.
Pełczyński’s Property (u)

Theorem

V_p does not have Pełczyński’s property (u).

Corollary

V_p doesn’t embed in any space that has an unconditional basis.

Conclusion

Hence V_p is not isomorphic to any S_q for $q \geq 1$.