
GRÖBNER BASES AND SUDOKU PUZZLES

COURTNEY THOMAS

1. Shidoku and Sudoku Puzzles

In this paper, we will discuss and build on the ideas in the article, “Gröbner
Basis Representations of Sudoku,” by Elizabeth Arnold, Stephen Lucas, and Laura
Taalman. We will first develop three ways of representing a Shidoku board as a
system of polynomial equations given its constraints. We will then explain how a
Gröbner basis of these systems of equations can be used to count the number of
Shidoku boards.

Using language from the article [ALT10], we have the following definitions. A
Sudoku board is a 9⇥ 9 grid where the 81 cells are filled with the numbers 1-9 such
that each row, column, or 3⇥3 block contains no repeated entries. A Sudoku puzzle
is a subset of a Sudoku board that uniquely determines the rest of the solution to
the board. A Shidoku board is similar to a Sudoku board, but is a 4⇥ 4 grid where
the 16 cells are filled with the numbers 1-4 such that each row, column, or 2 ⇥ 2

block contains no repeated entries. Thus, a Shidoku puzzle is a subset of a Shidoku
board that uniquely determines the rest of the solution to the board.

Define a cell to be each individual square. Define a region to be either a row,
column, or designated 2⇥2 square of cells. When we are talking about a particular
cell, we will call it by the name wi,j . That cell will lie in the i

th row and the j

th

column of the Shidoku board, as shown below.

w1,1 w1,2 w1,3 w1,4

w2,1 w2,2 w2,3 w2,4

w3,1 w3,2 w3,3 w3,4

w4,1 w4,2 w4,3 w4,4
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2. Polynomial Representations of Shidoku and Sudoku Puzzles

In this section, we will discuss three different polynomial representations of Shi-
doku: the Sum-Product Shidoku system, the Roots of Unity Shidoku system, and
the Boolean Shidoku system.

2.1. Sum-Product. To find the Sum-Product system of equations, we seek a set of
equations that represent the constraints of a Shidoku board. Using the knowledge
that each of the 16 cells may only take on the value of 1, 2, 3, or 4, and the knowledge
that each region (as defined above) of 4 cells may only contain the numbers 1, 2,
3, and 4 exactly once, we can derive a system of equations as follows. This system
relies on the knowledge that the only way that the numbers 1� 4 can be combined
such that they add to 10 and multiply to 24 is if each number is used exactly once.
There are four other ways that the numbers 1, 2, 3, and 4 can be combined to add
to 10 (namely {1, 1, 4, 4}, {1, 3, 3, 3}, {2, 2, 2, 4}, and {2, 2, 3, 3}), however, none of
these multiply to 24.

First, we will think of each of the 16 cells individually. We know that w1,1, .., w4,4

can only take on a value of 1, 2, 3, or 4 per our definition of Shidoku puzzle. Thus,
we have 16 equations of the form

(w � 1)(w � 2)(w � 3)(w � 4) = 0,

where w is replaced by each of the variables w1,1, ..., w4,4.
Now, we suppose that the set {w, x, y, z} is a set of four cells that make up

any region of the Shidoku board. Since in each region the numbers 1, 2, 3, and 4
are used exactly once, we know the sum of the cells in each region must sum to
1 + 2 + 3 + 4 = 10. So, for each of the 12 regions (4 rows, 4 columns, and 4 2 ⇥ 2

squares) containing some {w, x, y, z}, we know that

w + x+ y + z � 10 = 0

where w, x, y, and z are replaced by any 4 of the variables w1,1, ..., w4,4 that lie
within the same region.

Lastly, we must consider the same set {w, x, y, z} that makes up any region of
the Shidoku board. Since the numbers 1, 2, 3, and 4 are used exactly once in
each region, we know that the product of the cells in each region must multiply to
1 · 2 · 3 · 4 = 24. So, for each of the 12 regions, we know that

wxyz � 24 = 0

where w, x, y, and z are replaced by any 4 of the variables w1,1, ..., w4,4 that lie
within the same region.
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Thus, these 40 equations give us the Sum-Product Shidoku system. This means
we could mathematically represent any Shidoku puzzle by adding more equations
to specify any known cell values [ALT10]. For example, if we were to use the 40
polynomial equations that we just found, in addition to the following 6 equations:
w1,4 = 4, w2,1 = 4, w2,3 = 2, w3,2 = 3, w3,4 = 1, w4,1 = 1, we would be representing
the Shidoku puzzle below.

4

4 2

3 1

1

The solution to a system of equations representing a Shidoku puzzle is the solution
to a puzzle. For instance, when you solve for w1,1 in your system of equations, you
should obtain a value of 1, 2, 3, or 4 that would go in the first row and the first
column of the puzzle.

2.2. Roots of Unity. Next, we will find an entirely different set of equations,
which we will call the Roots of Unity system. To find this set of equations that
accurately represents the constraints of a Shidoku board, we will use the fact that
each of the values 1, �1, i, and �i are fourth roots of unity (meaning that each
value to the fourth power is equal to 1). Thus we will use these values instead of
the 1, 2, 3, and 4 that we used in the development of the Sum-Product system.

To find the Roots of Unity system, we must remember that the specific symbols
used in Shidoku have no effect on the rules or outcome of the board. With this fact
in mind, we will replace the symbols 1, 2, 3, and 4 with 1,�1, i, and �i. Now, as
before, we will start by looking at an equation for each cell individually. Since each
of these values is a fourth root of unity, we can easily see that for each of the 16
cells

w

4 � 1 = 0

where w is replaced by each of the variables w1,1, ..., w4,4.
Now, we will consider any two cells w and x that lie in the same region of the

board. By the first set of equations, we know that w

4 � 1 = 0 and that x4 � 1 = 0.

Thus, we know that w4 � x

4 = 0. If we factor this difference of two squares, we get
(w2 � x

2)(w2 + x

2) = (w � x)(w + x)(w2 + x

2) = 0. Since w and x lie in the same
region of the board, we know that they must have different values. So, if w 6= x,
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then w � x 6= 0. So, we get that for any w and x in the same region,

(w + x)(w2 + x

2) = 0

where w and x are replaced by any 2 of the variables w1,1, ..., w4,4that lie in the
same region of the Shidoku board.

So, how many of these equations are there? Well for rows, we know that there are
�4
2

�
possible w and x combinations. So, we have

�4
2

�
= 4!

2!·2! =
4·3
2 = 6 combinations

for each of the 4 rows. This combination also holds true for columns, so we have
6 combinations for each of the 4 columns. For each 2 ⇥ 2 block, we have

�4
2

�

combinations, but we must account for the two rows and two columns within the
2 ⇥ 2 block that we have already accounted for. This gives us 6 � 2 � 2 = 2

combinations for each of the four 2 ⇥ 2 blocks. Together, that gives us(6)(4) +
(6)(4) + (2)(4) = 24 + 24 + 8 = 56 equations of this type.

Together with the above 16 equations, we have 72 polynomial equations that
represent a Shidoku puzzle using the Roots of Unity system [ALT10].

2.3. Boolean. The Boolean system requires us to introduce more variables, but
will ultimately assist us in simplifying matters. We will introduce w1, w2, w3, and
w4 for each cell on the Shidoku board. Note that this brings us from 16 to 64
variables. In this system, we will set wk = 1 when the cell w takes on the value k,
and wk = 0 when w takes on any of the other three values. By doing this, we get
64 equations (4 for each cell) such that

wk(wk � 1) = 0.

While this may seem overwhelming, we must remember one important fact about
Boolean systems. Since cell values are only able to equal either zero or 1, we know
that no matter what value a particular variable holds, w

2 = w. Thus, during
computations, any power of any wk may simply be replaced by wk.

We also know that each cell on the board may only hold one value at a time.
Thus, only one of our Boolean variables for each cell (w1, w2, w3, w4) may equal 1,
while the rest will be equal to zero. So, we have 16 polynomial equations (one for
each cell) of the form

w1 + w2 + w3 + w4 = 1

where w is replaced by each of the values w1,1, ..., w4,4.

Lastly, we must find some equation to represent the fact that any two cells w

and x that lie in the same region of the board cannot hold the same value. So, for
any value of k, either wk or xk must be 0. Thus, we have 56 equations such that

w1x1 + w2x2 + w3x3 + w4x4 = 0
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where w and x are replaced by any 2 of the variables w1,1, ..., w4,4 that lie in the
same region of the Shidoku board.

These 136 equations together make up the Boolean Shidoku system. Although
these large systems of polynomials may seem cumbersome, we will use Gröbner
bases to handle them [ALT10].

3. Gröbner Bases

Informally, “a Gröbner basis for a system of polynomials is a new system of
polynomials with the same solutions as the original, but which is easier to solve
and often has additional ‘nice’ properties [ALT10].” In order to precisely describe
a Gröbner basis, there are a few terms from abstract algebra that will be useful.

Definition 1. A ring is a set together with two binary operations (denoted +
and ·) such that R is a commutative group under addition, multiplication in R is
associative, and the left and right distributive law in R holds [Fra03]. A polynomial
ring is a set R[x1, ..., xn] of all polynomials in the variables x1, ..., xn so that the
coefficients are in the ring R [Fra03].

Definition 2. An ideal of a ring R is an additive subgroup N of the ring R such
that for all a, b 2 R, aN ✓ N and Nb ✓ N [Fra03].

Definition 3. An ideal generated by polynomials f1, ..., fs, is denoted

hf1, ..., fsi =
(

sX

i=1

uifi|ui 2 k[x1, ..., xn], i = 1, ..., s

)

where k is a field [AL94].
So, given a system of polynomials, we are able to look at the ideal that these

polynomials generate [ALT10]. We will apply this to our systems of polynomials
we obtain from the polynomial representations of Shidoku boards.

Definition 4. We define the lexicographical term ordering (or lex ) with x1 > x2 >

· · · > xn as follows: For

↵ = (↵1, ...,↵n),� = (�1, ...,�n) 2 Nn

we define

x

↵
< x

�
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if and only if the first coordinates ↵i and �i in ↵ and � from the left, which are
different, satisfy ↵i < �i.

So, in the case of two variables x1 and x2, we have

1 < x2 < x

2
2 < x

3
2 < · · · < x1 < x2x1 < x

2
2x1 < · · · < x

2
1 < · · ·

[AL94]. We will use lexicographical term ordering (in reverse order) for use in
establishing what is said to be the leading term of a polynomial. By reverse lex,
we mean that we will be using the ordering w1,1 < w1,2 < ... < w4,4. For us,
lexicographical term ordering will allow us to find an ordered basis so that the first
polynomial contains only the variable w1,1, and each of the following polynomials
will contain only the variables used in previous polynomials in addition to one new
variable. This will allow us to make certain assumptions that will make it easier to
use the basis for counting purposes.

Definition 5. The leading term of a polynomial f is the “largest” term of the
polynomial as established by lexicographical term ordering (see Defininiton 4). The
leading term can be denoted as lt(f) [ALT10].

The leading term is comprised of both the leading coefficient lc(f) and the leading
power product lp(f), such that lt(f)=lc(f)lp(f). For example, given the polynomial
a

4 � 10a3 + 35a2 � 50a + 24, we can establish a

4 to be the leading term, since by
Definition 4, it is the “largest” term. It is comprised of the leading coefficient, 1,
and the leading power product, a4. We use this definition of leading term in order
to define the leading term ideal of a set.

Definition 6. The leading term ideal of a set S is the ideal Lt(S) generated by the
leading terms of the polynomials in S, where Lt(S) =hlt(f)|f 2 Si [ALT10]. For
example, given a set of polynomials S = {x, x+ 1}, the Lt(S)= hxi .

Theorem 7. (Hilbert Basis Theorem) In the ring k[x1, ..., xn], if I is any ideal
of k[x1, ..., xn], then there exist polynomials f1, ..., fs 2 k[x1, ..., xn] such that I =

hf1, ..., fsi[AL94].

Definition 8. A set of non-zero polynomials G in the ideal I is called a Gröbner
basis for I if and only if the leading term ideal of G is is equal to the leading term
ideal of the ideal I generated by G, or Lt(G)=Lt(hGi) [ALT10].

Recall the set from Definition 6, S = {x, x + 1}. We said that the Lt(S)= hxi .
However, the Lt(hSi)= h1i . So, S is not a Gröbner basis for the ideal hSi .
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In order to compute Gröbner bases when dealing with large systems of polyno-
mials, we will need to use a computer program. We know it is possible to obtain
such a basis because of a theorem by Buchberger.

Theorem 9. (Buchberger’s Algorithm) Every ideal I = (f1,...,fs) in k[X] has a
Gröbner basis which can be computed by an algorithm [Rot06].

Definition 10. Let 0 6= f, g 2 k[x1, ..., xn]. Let L =lcm(lp(f), lp(g)). The polyno-
mial

S(f, g) =
L

lt(f)
f � L

lt(g)
g

is called the S-polynomial of f and g [AL94].

Definition 11. Given f, g, h in k[x1, ..., xn], with g 6= 0, we say that f reduces to
h modulo g in one step, written,

f

g�! h,

if and only if lp(g) divides a non-zero term X that appears in f and

h = f � X

lt(g)
g

[AL94].

Definition 12. Let f , h, and f1, ..., fs be polynomials in k[x1, ..., xn], with fi 6=
0, (1  i  s), and let F = {f1, ..., fs}. We say that f reduces to h modulo F

denoted

f

F�! +h

if and only if there exist a sequence of indices i1, i2, ..., it 2 {1, ..., s} and a sequence
of polynomials h1, ..., ht�1 2 k[x1, ..., xn] such that

f

fi1�! h1
fi2�! h2

fi3�! ...

fit�1�! ht�1
fit�! h.

With these definitions, we can now state a more convenient characterization of
a Gröbner basis.
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Algorithm 1 Buchberger’s Algorithm
INPUT: F = {f1, ..., fs} ✓ k[x1, ..., xn]with fi 6= 0(1  i  s)
OUTPUT: G = {g1, ..., gt}, a Gröbner basis for hf1, ..., fsi
INITIALIZATION: G := F, G:= {{fi, fj}|fi 6= fj 2 G}
WHILE G 6=; DO
Choose any {f, g} 2 G
G:= G � {{f, g}}

S(f, g)
G�!+ h where h is reduced with respect to G

IF h 6= 0 THEN
G := G[{{u, h}|for all u2 G}
G := G [ {h}

Theorem 13. (Buchberger) Let G = {g1, ..., gt}be a set of non-zero polynomials in
k[x1, ..., xn]. Then G is a Gröbner basis for the ideal I = hg1, ..., gti if and only if
for all i 6= j,

S(gi, ..., gj)
G�!+ 0

[AL94].

4. Buchberger’s Algorithm

Computations of the solution of a system can be made easier if the system is
transformed in some way to a different system that is easier to solve, while main-
taining the same solutions. Recall Gauss-Jordan elimination, where by altering the
equations in the system, we are able to transform the system of a linear equations
into row-echelon form. The system yields the same solution but is much easier to
solve with back-substitution.

We want to use Buchberger’s Algorithm in order to compute a Gröbner basis
for a set of polynomials that is easier to solve. Algorithm 1 describes Buchberger’s
Algorithm.

We will do an example of finding a Gröbner basis by hand in the two variable
case, below.

Example. We will find the Gröbner basis for the system of polynomials {yx �
x,y

2 � x} by hand using the algorithm.
We begin with the set F = {yx � x, y

2 � x}. Our algorithm calls for us to set
our Gröbner basis G = {yx� x, y

2 � x} and G = {{yx� x, y

2 � x}}.
When G 6=;, we choose {yx�x, y

2�x} 2 G. Now, G = G�{{yx�x, y

2�x}} =;.
Next, we take the S-polynomial of (yx� x, y

2 � x), as follows:
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S(yx� x, y

2 � x) =
y

2
x

yx

(yx� x)� y

2
x

y

2
(y2 � x)

= y(yx� x)� x(y2 � x)

= y

2
x� yx� y

2
x+ x

2

= �yx+ x

2
.

We obtain S(yx� x, y

2 � x) = �yx+ x

2
.

For the last step of the WHILE loop, we must reduce our S-polynomial by G

until we obtain some remainder h that cannot be further reduced by G. So, we take

�yx+ x

2

yx� x

= �1 +
x

2 � x

yx� x

=) h = x

2 � x.

Since our h 6= 0, we edit G such that G = {{yx � x, x

2 � x}, {y2 � x, x

2 � x}}.
Additionally, we add our new h to our Gröbner basis. So, our new G = {yx �
x, y

2 � x, x

2 � x}. Since G 6=;, we begin the WHILE loop again.
This time, we choose {yx � x, x

2 � x}2 G. Now, G = G � {{yx � x, x

2 � x}} =

{{y2 � x, x

2 � x}}. Next, we take the S-polynomial of (yx� x, x

2 � x), as follows:

S(yx� x, x

2 � x) =
yx

2

yx

(yx� x)� yx

2

x

2
(x2 � x)

= x(yx� x)� y(x2 � x)

= yx

2 � x

2 � yx

2 + yx

= yx� x

2

We obtain S(yx� x, x

2 � x) = yx� x

2
.

For the last step of the WHILE loop, we must reduce our S-polynomial by G to
again obtain some remainder h that cannot be further reduced by G. So, we take

yx� x

2

yx� x

= 1 +
�x

2 + x

yx� x

=) h = �x

2 + x.

However, this h can be further reduced by a member of G. So, we take again

�x

2 + x

x

2 � x

= �1 + 0 =) h = 0.

Since we have obtained an h = 0, the WHILE loop is complete. Thus, the Gröbner
basis for

⌦
yx� x, y

2 � x

↵
is G = {yx� x, y

2 � x, x

2 � x}. I verified this calculation
using Mathematica.
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Figure 5.1. Sum-Product Shidoku Code

5. Finding a Gröbner Basis Using Mathematica

It becomes evident in the example above how increasingly complex this algorithm
becomes when there are more than 2 variables. Next, we will discuss how we found
a Gröbner basis for our systems of equations in 16 variables.

I first coded the sum-product Shidoku system. To do so, I input all 40 of the
equations mentioned in section 2.1 of this paper into Mathematica, as can be seen
in Figure 5.1 (Sum-Product Shidoku Code).

I then used reverse lexicographical term ordering. Because our system of poly-
nomial equations has a finite number of solutions, the reduced Gröbner basis for
the ideal generated by these polynomials using the lexicographical term ordering is
triangular [ALT10]. Since our basis will be triangular, the first 16 equations will
allow us to use back-substitution to solve the system of equations. I then used
Mathematica to find the Gröbner basis for the ideal generated by the sum-product
Shidoku system. Since no clues were given, this basis represents only the inherent
structure of the Shidoku board. The output is a system of 17 polynomials, 16 of
which are triangular, will be discussed in the next section.
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6. Counting

6.1. Shidoku Counting. By simple counting, we know that the maximum pos-
sible number of boards we could have is 416 = 4, 294, 967, 296[ALT10]. However,
because of our constraints, we can infer that there are not nearly that many possi-
bilities.

The figure below represents the number of choices we would have if we began to
count the possible number of boards by hand.

(4) (3) (2) (1)

(2) (1)

Beginning in the upper left-hand corner, we have four possibilities for w1,1, three
choices for w1,2, two choices for w1,3, and so on. Thus, there are 4 ·3 ·2 ·1 ·2 ·1 = 48

possible combinations for the first 6 squares. Let us look below at the Gröbner
basis for the Sum-Product Shidoku system:

(1) w

4
1,1 � 10w3

1,1 + 35w2
1,1 � 50w1,1 + 24

(2) w

3
1,2 + w1,1w

2
1,2 � 10w2

1,2 + w

2
1,1w1,2 � 10w1,1w1,2+ lower terms

(3) w

2
1,3 + w1,2w1,3 + w1,1w1,3 � 10w1,3 + w

2
1,2+ lower terms

(4) w1,4 + w1,3 + w1,2 + w1,1 � 10

(5) w

2
2,1 + w1,2w2,1 + w1,1w2,1 � 10w2,1+ lower terms

(6) w2,2 + w2,1 + w1,2 + w1,1 � 10

(7) w

2
2,3 � w1,2w2,3 � w1,1w2,3 + w1,1w1,2

(8) w2,4 + w2,3 � w1,2 � w1,1

(9) w

2
3,1 + w2,1w3,1 + w1,1w3,1 � 10w3,1 � w1,2w2,1+ lower terms

(10) 9w2,3w3,2 � 10w3
1,1w

2
1,2w1,3w2,1w3,2 + 75w2

1,1w
2
1,2w1,3w2,1w3,2+lower terms

(11) w

2
3,2 � w2,1w3,2 � w1,1w3,2 + w1,1w2,1

(12) 18w3,3 � 10w2
1,1w1,2w1,3w2,1w3,2 + 50w1,1w

2
1,2w1,3w2,1w3,2+ lower terms

(13) 18w3,4 + 10w2
1,1w

2
1,2w1,3w2,1w3,2 � 50w1,1w

2
1,2w1,3w2,1w3,2+ lower terms

(14) w4,1 + w3,1 + w2,1 + w1,1 � 10

(15) w4,2 + w3,2 � w2,1 � w1,1

(16) 18w4,3 + 10w2
1,1w

2
1,2w1,3w2,1w3,2 � 50w1,1w

2
1,2w1,3w2,1w3,2+ lower terms

(17) 18w4,4 � 10w2
1,1w

2
1,2w1,3w2,1w3,2 + 50w1,1w

2
1,2w1,3w2,1w3,2+ lower terms

We can see that 4, 3, 2, 1, 2, and 1 are the powers of the leading power products
on equations (1), (2), (3), (4), (5), and (6) of our Gröbner basis. This is not a
coincidence, and we will discuss how these results can be used in the end of this
section. When finding the solutions to equation (1) when it is equal to zero, we
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know that we have four possible solutions if there are no repeated roots. Since
our basis is triangular, this pattern continues so that equation (2) has 3 possible
solutions, equation (3) has 2 possible solutions, and so on. So, to find out how
many possible solutions there are for the first 6 equations in our Gröbner basis, we
can simply multiply to get 4 · 3 · 2 · 1 · 2 · 1 = 48 possible solutions for the first 6
variables {w1,1, w1,2, w1,3, w1,4, w2,1, w2,2}.

This logic seems to suggest that we could multiply all of the leading term degrees
of the Gröbner basis to obtain 4·3·2·1·2·1·2·1·2·2·1·1·1·1·1·1 = 384 possible Shidoku
boards. However, let us take a closer look at our Gröbner basis. In particular, let
us inspect equation number (10). Its leading term contains both w2,3and w3,2. This
particular equation represents a branching effect that will occur when counting the
number of possible Shidoku boards. I will introduce this “branching effect” first
with a concrete example, then introduce how it will affect our count involving the
Gröbner basis.

Since the naming of values is arbitrary, let us begin with one of the 48 Shidoku
puzzles, with the values as shown below.

1 2 3 4

3 4

From here, we will further affect the number of possible boards in our choosing
of the next several points. We can see, that if we were to begin to solve this Shidoku
puzzle, the value of w2,3 can either equal 1 or 2.

If w2,3 = 1, we can determine that w2,4 = 2.

1 2 3 4

3 4 1 2

From there, we are presented with another choice at w3,1 where it can either
equal 2 or 4.
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1 2 3 4

3 4 1 2

2 4

4 2

1 2 3 4

3 4 1 2

4 2

2 4

From here, there is only one more choice left to be made, in cell w3,2. Choosing
either 1 or 3 will uniquely determine the rest of the board. Thus, for w2,3 = 1, we
have four ways that the board could be solved. Therefore, there are 48 ·1 ·2 ·2 = 192

different Shidoku boards that are equivalent to those found in the calculation where
w2,3 = 1.

What about the case where w2,3 = 2? We have the following board.

1 2 3 4

3 4 2 1

Again, we have a choice at w3,1, where it can be equal to 2 or 4.

1 2 3 4

3 4 2 1

2 1 4 3

4 3 1 2

1 2 3 4

3 4 2 1

4 3 1 2

2 1 4 3
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From here, it can easily be seen that both boards are completely determined.
Thus, for w2,3 = 1, we have two ways that the board could be solved. Therefore,
there 48 · 1 · 2 = 96 different Shidoku boards that are equivalent to the case where
w2,3 = 2.

This gives us a total of 192 + 96 = 288 possible Shidoku boards [AL94] .
We are able to count the number of Shidoku boards by hand. However, we can

infer that the “branching” is much more complex in the Sudoku case, where we have
a 9⇥9 grid. Thus, we need to develop a way of counting using our Gröbner basis.

To do this, we would like to count the number of power products that are not
divisible by any of the leading power products of G. This is due to the fact that
our ideal I is zero-dimensional [ALT10], meaning there are only a finite number of
solutions to the system of polynomial equations.

Theorem 14. (Finiteness Theorem) Let k ⇢ C be a field, and let I ⇢ k[x1, ..., xn]

be an ideal. Then the following conditions are equivalent:

• The algebra A = k[x1, ..., xn]/I is a finite-dimensional over k.

• The variety V(I) ⇢ Cn is a finite set.
• If G is a Gröbner basis for I, then for each i, 1  i  n, there is an mi � 0

such that xmi
i =Lt(g) for some g 2 G.[AL94]

An ideal satisfying any of the above conditions is said to be zero-dimensional.
Thus, A is a finite-dimensional algebra if and only if I is a zero-dimensional ideal.

Let k[x1, ..., xn]/I be a vector space representing the set of all cosets of I . Since
our ideal is zero-dimensional, we can refer to Proposition 2.1.6 in [AL94] that states
the following:

Proposition 15. Let G = {g1, ..., gm} be a Gröbner basis for an ideal I. A basis
for the k vector space k[x1, ..., xn]/I consists of the cosets of all the power products
X such that lp(gi) does not divide X for all i = 1, 2, ...m [AL94].

For us, this means that the basis for the vector space Q[w1,1, ..., w4,4]/I is all
of the cosets such that the leading power product of any polynomial in G is not
divisible by any other leading power product of G [ALT10].

An ideal J is said to be a radical ideal if for some power of a polynomial fn2 J,

then f 2 J . For example, the ideal I =
⌦
x

2
, y

2
↵

in R[x, y] is not radical, since
neither x nor y is in the ideal I. However, the ideal J = hx, yi is a radical ideal,
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since x and y are in the ideal J . We also know that our ideal is radical [ALT10],
which allows us to assume that we have no repeated roots in our Gröbner basis.
Let us use the following Theorem to show by example why we can assume that we
have no repeated roots in our Gröbner basis.

Theorem 16. A set of non-zero polynomials G = {g1, ..., gt} contained in an ideal
I, is a Gröbner basis for I if and only if for all f 2 I such that f 6= 0, there exists
i 2 {1, ..., t} such that lp(gi) divides lp(f)[AL94].

Suppose that g = xy

2 is a polynomial with a repeated root in a Gröbner basis G.
We know that f = x · g = x

2
y

2 2 I. Since I is radical, and x

2
y

2 2 I, then xy 2 I.

However, per the Theorem above, g must divide f. Thus, our Gröbner basis must
have no repeated roots.

If we know that we have a zero-dimensional, radical ideal, we can use a Theorem
from [CLO98].

Theorem 17. Let I be a zero-dimensional ideal in C[x1, ..., xn], and let A =

C[x1, ..., xn]/I. Then dimC(A) is greater than or equal to the number of points
in the solution to the system of polynomials. Moreover, equality occurs if and only
if I is a radical ideal [CLO98].

Thus, we know that the dimension of Q[w1,1, ..., w4,4]/I is the number of solutions
to the system of polynomials [CLO98].

Now, we need to use the Gröbner basis in order to count the number of power
products that are not divisible by any leading power products of G. We must
remove any power products that are divisible by any leading power products of G.
Allowable power products will be items not divisible by any leading power product
of G, for example w

0
1,1, w1,1, w

2
1,1, w

3
1,1, w1,1w1,2, w

2
1,1w1,2 and so on. How do we

know the number of power products we have? We can count the number of these
power products using the form w

r1,1
1,1 w

r1,2
1,2 · · ·wr4,4

4,4 , where r1,1, ..., r4,4 represent the
power of each variable. For instance, if we do not want the power product to be
divisible by w

4
1,1(the leading power product of (1)), we have 4 choices of r1,1 which

would not make the power product divisible by w

4
1,1(namely, w0

1,1, w
1
1,1, w

2
1,1, and

w

3
1,1). Continuing in this manner, we have 4 ·3 ·2 ·1 ·2 ·1 ·2 ·1 ·2 ·2 ·1 ·1 ·1 ·1 ·1 ·1 = 384

choices so far [ALT10].
To remove any power products that are divisible by any leading power products

of G, we take another look at the polynomial (10) from our Gröbner basis, the one
whose leading term contained both w2,3 and w3,2. We need only concern ourselves
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with this polynomial since each of the other 16 leading power products are in only
one distinct variable, and are therefore, not divisible by any other power products
of G. The non-allowable power products (those that will be divisible by some other
leading power product of G) are of the form w

r1,1
1,1 w

r1,2
1,2 · · ·wr4,4

4,4 . We know any non-
allowable power products will be of the form w

r1,1
1,1 w

r1,2
1,2 ···wr4,4

4,4 where r2,3 = r3,2 = 1

(since r

1
2,3 and r

1
3,2 would create a power product that is divisible by another power

product). Thus, there are 4 ·3 ·2 ·1 ·2 ·1 ·1 ·1 ·2 ·1 ·1 ·1 ·1 ·1 ·1 ·1 = 96 power products
which are divisible by a leading power product that we must remove. Thus, we have
384� 96 = 288 different possible Shidoku boards, as expected [ALT10].

6.2. Roots of Unity Shidoku System. I next decided to move to the Roots of
Unity and Boolean Shidoku systems, since the board count should remain the same
no matter what representation of the Shidoku board that we use. I began with Roots
of Unity and used the 72 (see Section 2.2) polynomial equations in Mathematica as
before, as can be seen in Figure 6.1 (Roots of Unity Shidoku Code). I coded the
equations, used reverse lexicographical term ordering, and attempted to find the
Gröbner basis for the ideal generated by the Roots of Unity system. However, since
the Roots of Unity system requires almost double the amount of input equations
as the Sum-Product system, Mathematica was not able to find a Gröbner basis
without the use of clues. We know from our previous calculations that we have
288 total possible Shidoku boards. If we insert the first row of clues such that
w1,1 = 1, w1,2 = �1, w1,3 = I, and w1,4 = �I, we can assert that there are 288

4! = 12

possible boards by simple counting principles. Thus, I found a Gröbner basis using
both the equations and clues listed above in Figure 6.1 (Roots of Unity Shidoku
Code). The output for this system is as follows:

(1) w1,1 � 1

(2) w1,2 + 1

(3) w1,3 � i

(4) w1,4 + i

(5) w

2
2,1 + 1

(6) w2,2 + w2,1

(7) w

2
2,3 � 1

(8) w2,4 + w2,3

(9) w

2
3,1 + w2,1w3,1 + w3,1 + w2,1

(10) w2,3w3,2 + iw2,1w3,2 + w2,3w3,1 + iw2,1w3,1

(11) w

2
3,2 � w2,1w3,2 � w3,2 � w2,1

(12) 2w3,3+ iw2,1w3,2+w3,2+w2,1w2,3w3,1+w2,3w3,1+(1� i)w3,1+lower terms
(13) 2w3,4� iw2,1w3,2+w3,2�w2,1w2,3w3,1�w2,3w3,1+(1+ i)w3,1+lower terms
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(14) w4,1 + w3,1 + w2,1 + 1

(15) w4,2 + w3,2 � w2,1 � 1

(16) 2w4,3� iw2,1w3,2�w3,2�w2,1w2,3w3,1�w2,3w3,1� (1� i)w3,1+lower terms
(17) 2w4,4+ iw2,1w3,2�w3,2+w2,1w2,3w3,1+w2,3w3,1� (1+ i)w3,1+lower terms
The total number of power products for this basis is 1 · 1 · 1 · 1 · 2 · 1 · 2 · 1 ·

2 · 2 · 1 · 1 · 1 · 1 · 1 · 1 = 16. We then remove our non-allowable power products:
1 · 1 · 1 · 1 · 2 · 1 · 1 · 1 · 2 · 1 · 1 · 1 · 1 · 1 · 1 · 1 = 4. We find by using the leading power
products in the same way as before, there are 16� 4 = 12 possible Shidoku boards
of this form, as expected.

Figure 6.1. Roots of Unity Shidoku Code
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6.3. Boolean Shidoku System. I ended my explorations of Shidoku puzzles with
the Boolean system, and attempted to use the 136 (see Section 2.3) equations to
find a Gröbner basis that we could use to count Shidoku boards. This code can be
seen in Figure 6.2 (Boolean Shidoku Code). Again, since the number of equations
was far too large for Mathematica to properly execute, I added clues to make the
top row read across as 1, 2, 3, 4. To do this is the Boolean case, it required us
to insert 16 clues such that w1,1,1 = 1, w1,1,2 = 0, w1,1,3 = 0, w1,1,4 = 0, w1,2,1 =

0, w1,2,2 = 1, w1,2,3 = 0, w1,2,4 = 0, w1,3,1 = 0, w1,3,2 = 0, w1,3,3 = 1, w1,3,4 =

0, w1,4,1 = 0, w1,4,2 = 0, w1,4,3 = 0, and w1,4,4 = 1. I found a Gröbner basis using
equations and the clues listed above and obtained:

(1) w1,1,1 � 1

(2) w1,1,2

(3) w1,1,3

(4) w1,1,4

(5) w1,2,1

(6) w1,2,2 � 1

(7) w1,2,3

(8) w1,2,4

(9) w1,3,1

(10) w1,3,2

(11) w1,3,3 � 1

(12) w1,3,4

(13) w1,4,1

(14) w1,4,2

(15) w1,4,3

(16) w1,4,4 � 1

(17) w2,1,1

(18) w2,1,2

(19) w

2
2,1,3 � w2,1,3

(20) w2,1,4 + w2,1,3 � 1

(21) w2,2,1

(22) w2,2,2

(23) w2,2,3 + w2,1,3�1

(24) w2,2,4 � w2,1,3

(25) w

2
2,3,1 � w2,3,1

(26) w2,3,2 + w2,3,1 � 1

(27) w2,3,3

(28) w2,3,4

(29) w2,4,1 + w2,3,1 � 1
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(30) w2,4,2 � w2,3,1

(31) w2,4,3

(32) w2,4,4

(33) w3,1,1

(34) w

2
3,1,2 � w3,1,2

(35) w3,1,3 � w2,1,3w3,1,2 + w3,1,2 + w2,1,3 � 1

(36) w3,1,4 + w2,1,3w3,1,2 � w2,1,3

(37) w2,3,1w3,2,1 � w2,1,3w3,2,1 � w2,3,1w3,1,2 + w2,1,3w3,1,2

(38) w

2
3,2,1 � w3,2,1

(39) w3,2,2

(40) w3,2,3 + w2,1,3w3,2,1 � w2,1,3

(41) w3,2,4 � w2,1,3w3,2,1 + w3,2,1 + w2,1,3 � 1

(42) w3,3,1 � w2,1,3w3,2,1 + w3,2,1 � w2,3,1w3,1,2 + w2,1,3w3,1,2 + w2,3,1 � 1

(43) w3,3,2 + w2,3,1w3,1,2 � w2,3,1

(44) w3,3,3

(45) w3,3,4 + w2,1,3w3,2,1 � w3,2,1 � w2,1,3w3,1,2

(46) w3,4,1 + w2,1,3w3,2,1 + w2,3,1w3,1,2 � w2,1,3w3,1,2 � w2,3,1

(47) w3,4,2 � w2,3,1w3,1,2 + w3,1,2 + w2,3,1 � 1

(48) w3,4,3 � w2,1,3w3,2,1 + w2,1,3w3,1,2 � w3,1,2

(49) w3,4,4

(50) w4,1,1

(51) w4,1,2 + w3,1,2 � 1

(52) w4,1,3 + w2,1,3w3,1,2 � w3,1,2

(53) w4,1,4 � w2,1,3w3,1,2

(54) w4,2,1 + w3,2,1 � 1

(55) w4,2,2

(56) w4,2,3 � w2,1,3w3,2,1

(57) w4,2,4 + w2,1,3w3,2,1 � w3,2,1

(58) w4,3,1 + w2,1,3w3,2,1 � w3,2,1 + w2,3,1w3,1,2 � w2,1,3w3,1,2

(59) w4,3,2 � w2,3,1w3,1,2

(60) w4,3,3

(61) w4,3,4 � w2,1,3w3,2,1 + w3,2,1 + w2,1,3w3,1,2 � 1

(62) w4,4,1 � w2,1,3w3,2,1 � w2,3,1w3,1,2 + w2,1,3w3,1,2

(63) w4,4,2 + w2,3,1w3,1,2 � w3,1,2

(64) w4,4,3 + w2,1,3w3,2,1 � w2,1,3w3,1,2 + w3,1,2 � 1

(65) w4,4,4

The total number of power products for this basis is 1 ·1 ·1 ·1 ·1 ·1 ·1 ·1 ·1 ·1 ·1 ·1 ·
1 ·1 ·1 ·1 ·1 ·1 ·2 ·1 ·1 ·1 ·1 ·1 ·2 ·1 ·1 ·1 ·1 ·1 ·1 ·1 ·1 ·2 ·1 ·1 ·2 ·1 ·1 ·1 ·1 ·1 ·1 ·1 ·1 ·1 ·1 ·1 ·1 ·
1 ·1 ·1 ·1 ·1 ·1 ·1 ·1 ·1 ·1 ·1 ·1 ·1 ·1 ·1 = 16. We then remove our non-allowable power
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Figure 6.2. Boolean Shidoku Code
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products: 1 ·1 ·1 ·1 ·1 ·1 ·1 ·1 ·1 ·1 ·1 ·1 ·1 ·1 ·1 ·1 ·1 ·1 ·2 ·1 ·1 ·1 ·1 ·1 ·1 ·1 ·1 ·1 ·1 ·1 ·1 ·
1 ·1 ·2 ·1 ·1 ·1 ·1 ·1 ·1 ·1 ·1 ·1 ·1 ·1 ·1 ·1 ·1 ·1 ·1 ·1 ·1 ·1 ·1 ·1 ·1 ·1 ·1 ·1 ·1 ·1 ·1 ·1 ·1 = 4.

We find by using the leading power products in the same way as before, there are
16� 4 = 12 possible Shidoku boards of this form, as expected.

6.4. Applications for Sudoku. The last natural extension of these findings is to
see how we can apply our knowledge to the Sudoku case. We began with the Sum-
Product Sudoku System. The Sum-Product Sudoku code can be seen in Figure
6.4 (Sum-Product Shidoku Code). This system contains 135 equations. It was ob-
tained using the same method as the Sum-Product Shidoku code, but with slightly
different numbers to accommodate to the 9⇥9 grid. We were required to use the
number set {�2,�1, 1, 2, 3, 4, 5, 6, 7} instead of the number set {1, 2, 3, 4, 5, 6, 7, 8, 9}
as would be expected. This is because there is more than one way to combine the
numbers 1 � 9 and obtain a sum of 45 and a product of 362,880, namely the set
{1, 2, 4, 4, 4, 5, 7, 9, 9}. By using the number set {�2,�1, 1, 2, 3, 4, 5, 6, 7}, we have
a system of numbers whose sum is 25 and whose product is 10,080. This sum and
product can only be obtained from this set of numbers by using each number in
the set exactly once according to [ALT10].

I coded the Boolean Sudoku in much the same way that I did the Boolean
Shidoku, with slight accommodations for the size. This resulted in 1,620 equations.

In the Sudoku case for both the Sum-Product and Boolean systems, not only
are there several more equations, there are several more variables and much longer
equations contained in these polynomial representations. We attempted to generate
Gröbner bases for both of these systems, but the computing power needed was too
large. We also attempted to put in clues to a Sudoku puzzle and attempted to
use it as a puzzle solver, since with these 37 clues, the algorithm would have had
to compute significantly less. We tried doing this for both the Sum-Product and
Boolean Sudoku systems that we had created. However, in Mathematica, we could
not get either to run.

A point of interest in finding Gröbner bases for Sudoku puzzles may lie in the
inherent structure of Buchberger’s Algorithm. In the algorithm, there are two
places where choices are made: the order in which the polynomials are input, which
affects the application of the Division Algorithm, and in the WHILE loop where
we compute S-polynomials, we choose {f, g} at random. Either of these choices
could lead us to a different Gröbner basis [AL94].

Currently, it has been shown that there are 6,670,903,752,021,072,936,960 pos-
sible Sudoku boards [ALT10]. This method of counting using Gröbner bases de-
scribed in this paper may be helpful in developing a structured way to count Sudoku
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Figure 6.3. Sum-Product Sudoku Code

boards. In addition to counting boards, it should be noted that a Gröbner basis
can be used as a Shidoku/Sudoku “solver” given the correct number of clues. It has
been conjectured that the minimum number of given values that can completely
determine a Sudoku board is 17. This is another opportunity where, with further
research, a Gröbner basis could assist us in answering questions related to Sudoku
puzzles [ALT10]
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