ECE 584
Analog CMOS Integrated Circuit Design
Spring 2018

Instructor: Dr. George L. Engel (EB-3043)
Time: M, W (1:30 PM - 2:45 PM)
Location: EB-3140 (with lab in EB-3009)
Phone: 650-2806
Email: gengel@siue.edu
Website: www.siue.edu/~gengel
Office Hours: M, W 3:00 PM - 4:00 PM and T, R 2:00 - 3:00 pm

Course Description

Course material includes the study of the operating principles of CMOS analog integrated circuits, physics of MOS devices, linearized models of MOSFETs, and circuit design techniques for realizing CMOS operational amplifiers, current references, voltage references, etc.

Grading Policy

Midterm Exam 20 %
Final Exam 20 %
Midterm Project 20 %
Final Project 20 %
Homework Assignments 20 %

Administrative Issues

If you have a documented disability that requires academic accommodations, please go to Disability Support Services (DSS) for coordination of your academic accommodations. DSS is located in the Student Success Center, Room 1270; you may contact them to make an appointment by calling (618) 650-3726 or sending an email to disabilitysupport@siue.edu. Please visit the DSS website located online at www.siue.edu/dss for more information.
Required Texts

Analog Integrated Circuit Design
John Wiley & Sons
Tony Carusone, David A. Johns, Kenneth W. Martin
ISBN Number: 978-0-470-77010-8

Course Outline

M Jan 08 MOS Transistors (Sec. 1.2)
W Jan 10 Advanced MOS Modelling (Sec. 1.4)
M Jan 15 *** Martin Luther King Day (NO CLASS) ***
W Jan 17 Passive Devices (Sec. 1.6)
M Jan 22 Variability and Mismatch (Sec. 2.3)
W Jan 24 Analog Layout Considerations (Sec. 2.4)
M Jan 29 Simple CMOS Current Mirror (Sec. 3.1)
W Jan 31 Common Source Amplifier (Sec 3.2)
M Feb 05 Source Follower (Sec. 3.3)
W Feb 07 Common Gate Amplifier (Sec. 3.4)
M Feb 12 Cascode Current Mirrors (Sec. 3.6)
W Feb 14 Cascode Gain Stage (Sec. 3.7)
M Feb 19 MOS Differential Pair (Sec. 3.8)
W Feb 21 Frequency Response of Linear Systems (Sec. 4.1)
M Feb 26 Frequency Response of Elementary Transistor Circuits (Sec. 4.2)
W Feb 28 Midterm Exam (Chapters 1, 2, 3)
M Mar 05 ***** SPRING BREAK *****
W Mar 07 ***** SPRING BREAK *****
M Mar 12 Cascode Gain Stage (Sec. 4.3)
W Mar 14 Source Follower Amplifier (Sec. 4.4)
M Mar 19 Feedback Amplifiers Review (Chapter 5)
<table>
<thead>
<tr>
<th>Date</th>
<th>Topic</th>
<th>Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>W Mar 21</td>
<td>Two-Stage CMOS Opamp</td>
<td>Sec. 6.1</td>
</tr>
<tr>
<td>M Mar 26</td>
<td>Two-Stage CMOS Opamp</td>
<td>Sec. 6.1</td>
</tr>
<tr>
<td>W Mar 28</td>
<td>Op-Amp Compensation</td>
<td>Sec. 6.2</td>
</tr>
<tr>
<td>M Apr 02</td>
<td>Folded Cascode Opamp</td>
<td>Sec 6.4</td>
</tr>
<tr>
<td>W Apr 04</td>
<td>Folded Cascode Opamp</td>
<td>Sec 6.4</td>
</tr>
<tr>
<td>M Apr 09</td>
<td>Analog Integrated Circuit Biasing</td>
<td>Sec. 7.1</td>
</tr>
<tr>
<td>W Apr 11</td>
<td>Establishing Constant Voltages and Currents</td>
<td>Sec. 7.3</td>
</tr>
<tr>
<td>M Apr 16</td>
<td>Establishing Constant Voltages and Currents</td>
<td>Sec. 7.3</td>
</tr>
<tr>
<td>W Apr 18</td>
<td>Noise Analysis and Modeling</td>
<td>Chapter 9</td>
</tr>
<tr>
<td>M Apr 23</td>
<td>Noise Analysis and Modeling</td>
<td>Chapter 9</td>
</tr>
<tr>
<td>W Apr 25</td>
<td>Noise Analysis and Modeling</td>
<td>Chapter 9</td>
</tr>
</tbody>
</table>