ECE 584
Analog CMOS Integrated Circuit Design
Spring 2019

Instructor: Dr. George L. Engel (EB-3043)
Time: M, W (1:30 PM - 2:45 PM)
Location: EB-3009
Phone: 650-2806
Email: gengel@siue.edu
Website: www.siue.edu/~gengel
Office Hours: M, W 3:00 PM - 4:30 PM and T, R 2:00 - 3:30 pm

Course Description
Course material includes the study of the operating principles of CMOS analog integrated
circuits, physics of MOS devices, linearized models of MOSFETs, and circuit design tech-
niques for realizing CMOS operational amplifiers, current references, voltage references, etc.

Grading Policy
Midterm Exam 20 %
Final Exam 20 %
Midterm Project 25 %
Final Project 25 %
Homework Assignments 10 %

Administrative Issues
Based on University Class Attendance Policy 119: It is the responsibility of students to
ascertain the policies of instructors with regard to absence from class, and to make arrange-
ments satisfactory to instructors with regard to missed course work. Failure to attend the
first session of a course may result in the students place in class being assigned to another
student.
If you have a documented disability that requires academic accommodations, please go to Disability Support Services (DSS) for coordination of your academic accommodations. DSS is located in the Student Success Center, Room 1270; you may contact them to make an appointment by calling (618) 650-3726 or sending an email to disabilitysupport@siue.edu. Please visit the DSS website located online at www.siue.edu/dss for more information.

Students are expected to be familiar with and follow the Student Academic Code. It is included in the SIUE Policies and Procedures under Section 3C2.2.

Required Texts

Analog Integrated Circuit Design
John Wiley & Sons
Tony Carusone, David A. Johns, Kenneth W. Martin
ISBN Number: 978-0-470-77010-8

Course Outline

M Jan 14 MOS Transistors (Sec. 1.2)
W Jan 16 Advanced MOS Modelling (Sec. 1.4)
M Jan 21 *** Martin Luther King Day (NO CLASS) ***
W Jan 23 Passive Devices (Sec. 1.6)
M Jan 28 Variability and Mismatch (Sec. 2.3)
W Jan 30 Analog Layout Considerations (Sec. 2.4)
M Feb 04 Simple CMOS Current Mirror (Sec. 3.1)
W Feb 06 Common Source Amplifier (Sec.3.2)
M Feb 11 Source Follower (Sec. 3.3)
W Feb 13 Common Gate Amplifier (Sec. 3.4)
M Feb 18 Cascode Current Mirrors (Sec. 3.6)
W Feb 20 Cascode Gain Stage (Sec. 3.7)
M Feb 25 MOS Differential Pair (Sec. 3.8)
W Feb 27 Frequency Response of Linear Systems (Sec. 4.1)
M Mar 04 Frequency Response of Elementary Transistor Circuits (Sec. 4.2)
W Mar 06 Midterm Exam (Chapters 1, 2, 3)
M Mar 11 ***** SPRING BREAK *****
W Mar 13 ***** SPRING BREAK *****
M Mar 18 Cascode Gain Stage (Sec. 4.3)
W Mar 20 Source Follower Amplifier (Sec. 4.4)
M Mar 25 Feedback Amplifiers Review (Chapter 5)
W Mar 27 Two-Stage CMOS Opamp (Sec. 6.1)
M Apr 01 Two-Stage CMOS Opamp (Sec. 6.1)
W Apr 03 Op-Amp Compensation (Sec. 6.2)
M Apr 08 Folded Cascode Opamp (Sec 6.4)
W Apr 10 Folded Cascode Opamp (Sec 6.4)
M Apr 15 Analog Integrated Circuit Biasing (Sec. 7.1)
W Apr 17 Establishing ConstantVoltages and Currents (Sec. 7.3)
M Apr 22 Establishing Constant Voltages and Currents (Sec. 7.3)
W Apr 24 Noise Analysis and Modeling (Chapter 9)
M Apr 29 Noise Analysis and Modeling (Chapter 9)
W May 01 Noise Analysis and Modeling (Chapter 9)