Chapter 5. Fourier Analysis for Discrete-Time Signals and Systems

Chapter Objectives

1. Learn techniques for representing discrete-time periodic signals using orthogonal sets of periodic basis functions.
2. Study properties of exponential, trigonometric and compact Fourier series, and conditions for their existence.
3. Learn the Fourier transform for non-periodic signal as an extension of Fourier series for periodic signals
4. Study the properties of the Fourier transform. Understand the concepts of energy and power spectral density.

5.2 Exponential Fourier Series (EFS)

Continue-Time Fourier Series
Synthesis equation:
$\tilde{x}(t)=\sum_{k=-\infty}^{\infty} c_{k} e^{j k \omega_{0} t}$

Analysis equation:
$c_{k}=\frac{1}{T_{0}} \int_{t_{0}}^{t_{0}+T_{0}} \tilde{x}(t) e^{-j k \omega_{0} t} d t$

Discrete-Time Fourier Series

Synthesis equation:

$$
\tilde{x}[n]=\sum_{k=0}^{N-1} c_{k} e^{j(2 \pi / N) k n}
$$

Analysis equation:

$$
c_{k}=\frac{1}{N} \sum_{n=0}^{N-1} x[n] e^{-j(2 \pi / N) k n}
$$

5.2.7 Properties of Fourier Series

Linearity

Continue-Time Fourier Series

$$
\begin{aligned}
x(t) & \stackrel{\Im}{\longleftrightarrow} c_{k} \\
y(t) & \stackrel{\Im}{\longleftrightarrow} d_{k} \\
a_{1} x(t)+a_{2} y(t) & \stackrel{\Im}{\longleftrightarrow} \\
\longleftrightarrow & c_{1}+a_{2} d_{k}
\end{aligned}
$$

Discrete-Time Fourier Series

$$
x[n] \stackrel{\Im}{\longleftrightarrow} c_{k}
$$

$$
y[n] \stackrel{\Im}{\longleftrightarrow} d_{k}
$$

$$
a_{1} x[n]+a_{2} y[n] \stackrel{\Im}{\longleftrightarrow} a_{1} c_{k}+a_{2} d_{k}
$$

Where a_{1} and a_{2} are any two constants

5.2.7 Properties of Fourier Series

Time shift

Continue-Time Fourier Series

$$
\begin{aligned}
& \tilde{x}(t)=\sum_{k=-\infty}^{\infty} c_{k} e^{j k w_{0} t} \\
& \tilde{x}(t-\tau)=\sum_{k=-\infty}^{\infty}\left[c_{k} e^{-j k w_{0} \tau}\right] e^{j k w_{0} t}
\end{aligned}
$$

5.3 Analysis of Non-periodic Continuous-Time Signals

Discrete-Time Fourier Transform

Synthesis equation (inverse):
Analysis equation (forward):
$x[n]=\frac{1}{2 \pi} \int_{-\pi}^{\pi} X(\Omega) e^{j \Omega n} d \Omega$

$$
X(\Omega)=\sum_{n=-\infty}^{\infty} x[n] e^{-j \Omega n}
$$

5.3 Analysis of Non-periodic Continuous-Time Signals

Continue-Time Fourier Transform

Synthesis equation (inverse):
$x(t)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} X(\omega) e^{j w t} d w$

Analysis equation (forward):

$$
X(\omega)=\int_{-\infty}^{\infty} x(t) e^{-j w t} d t
$$

Discrete-Time Fourier Transform

Synthesis equation (inverse):
$x[n]=\frac{1}{2 \pi} \int_{-\pi}^{\pi} X(\Omega) e^{j \Omega n} d \Omega$

Analysis equation (forward):

$$
X(\Omega)=\sum_{n=-\infty}^{\infty} x[n] e^{-j \Omega n}
$$

5.3.2 Existence of Fourier Transform

Is it always possible to determine the Fourier series coefficients?
\diamond Absolute summable: $\sum_{n=-\infty}^{\infty}|x[n]|<\infty$
\diamond Square - summable: $\sum_{n=-\infty}^{\infty}|x[n]|^{2}<\infty$

5.3.5 Properties of Fourier Transform

Linearity:

$$
\begin{aligned}
& x_{1}[n] \stackrel{\Im}{\longleftrightarrow} X_{1}(\Omega) \quad \text { and } \quad x_{2}[n] \stackrel{\Im}{\longleftrightarrow} X_{2}(\Omega) \\
& \alpha_{1} x_{1}[n]+\alpha_{2} x_{2}[n] \stackrel{\Im}{\longleftrightarrow} \alpha_{1} X_{1}(\Omega)+\alpha_{2} X_{2}(\Omega)
\end{aligned}
$$

Where a_{1} and a_{2} are any two constants

Periodicity:

$$
X(\Omega+2 \pi r)=X(\Omega)
$$

for all integers r

5.3.5 Properties of Fourier Transform

Time Shifting:

$$
x[n] \stackrel{\mathfrak{J}}{\longleftrightarrow} X(\Omega) \quad \longleftrightarrow x[n-m] \stackrel{\mathcal{I}}{\longleftrightarrow} X(\Omega) e^{-j \Omega m}
$$

Frequency Shifting:

$$
x[n] \stackrel{\Im}{\longleftrightarrow} X(\Omega) \quad \square x[n] e^{-j \Omega_{0} n} \stackrel{\mathfrak{I}}{\longleftrightarrow} X\left(\Omega-\Omega_{0}\right)
$$

5.3.5 Properties of Fourier Transform

Convolution Property:

$$
x_{1}[n] \stackrel{\Im}{\longleftrightarrow} X_{1}(\Omega) \quad x_{2}[n] \stackrel{\Im}{\longleftrightarrow} X_{2}(\Omega)
$$

$$
x_{1}[n] * x_{2}[n] \stackrel{\Im}{\longleftrightarrow} X_{1}(\Omega) X_{2}(\Omega) \quad X_{1}(\Omega) * X_{2}(\Omega) \stackrel{\Im}{\longleftrightarrow} x_{1}[n] x_{2}[n]
$$

5.4 Energy and Power in Frequency Domain

Parseval's Theorem:

For a periodic power signal $x(t)$

Continue-Time

$$
\frac{1}{T_{0}} \int_{t_{0}}^{t_{0}+T_{0}}|x(t)|^{2} d t=\sum_{k=-\infty}^{\infty}\left|c_{k}\right|^{2} \quad \frac{1}{N} \sum_{k=0}^{N-1}|x[n]|^{2}=\sum_{k=0}^{N-1}\left|c_{k}\right|^{2}
$$

For a non-periodic power signal

Continue-Time

$$
\int_{-\infty}^{\infty}|x(t)|^{2} d t=\int_{-\infty}^{\infty}|X(f)|^{2} d f
$$

Discrete-Time

$$
\sum_{k=0}^{N-1}|x[n]|^{2}=\frac{1}{2 \pi} \int_{-\pi}^{\pi}|X(\Omega)|^{2} d \Omega
$$

5.4 Energy and Power in Frequency Domain

Power Spectral Density:

$$
S_{x}(\Omega)=2 \pi \sum_{k=-\infty}^{\infty}\left|c_{k}\right|^{2} \delta\left(\Omega-k \Omega_{0}\right)
$$

5.4 Energy and Power in Frequency Domain

Autocorrelation Function:

For a energy signal $x(t)$ the autocorrelation function is

$$
r_{x x}[m]=\sum_{n=-\infty}^{\infty} x[n] x[n+m]
$$

5.5 System Function Concept

System function (frequency response)

In general , $H(w)$ is a complex function of w, and can be written in polar form as:

$$
H(\Omega)=|H(\Omega)| e^{j \Theta(\Omega)}
$$

5.8 Discrete Fourier Transform

DTFS

DTFT

DFT

Synthesis equation (inverse):

$$
\begin{array}{lr}
x[n]=\sum_{k=0}^{N-1} c_{k} e^{j(2 \pi / N) k n} & x[n]=\frac{1}{2 \pi} \int_{-\pi}^{\pi} X(\Omega) e^{j \Omega n} d \Omega \\
\boldsymbol{n}=\mathbf{0}, \mathbf{1}, \ldots, \boldsymbol{N}-\mathbf{1} & x[n]=\frac{1}{N} \sum_{k=0}^{N-1} X[k] e^{j(2 \pi / N) k n} \\
n=\mathbf{0}, \mathbf{1}, \ldots, \mathbf{N}-\mathbf{1}
\end{array}
$$

Analysis equation (forward):

$$
\begin{aligned}
& c_{k}=\frac{1}{N} \sum_{n=0}^{N-1} x[n] e^{-j(2 \pi / N) k n} \quad X(\Omega)=\sum_{n=-\infty}^{\infty} x[n] e^{-j \Omega n} \quad X[k]=\sum_{n=0}^{N-1} x[n] e^{-j(2 \pi / N) k n} \\
& k=0,1, \ldots ., N-1 \\
& k=0,1, \ldots, N-1
\end{aligned}
$$

5.8 Discrete Fourier Transform

Relationship of the DFT to the DTFT

DTFT

$$
X(\Omega)=\sum_{n=-\infty}^{\infty} x[n] e^{-j \Omega n}
$$

$$
X[k]=\sum_{n=0}^{N-1} x[n] e^{-j(2 \pi / N) k n}
$$

The DFT of a length- N signal is equal to its DTFT evaluated at a set of N angular frequencies equally spaced in the interval $[0,2 \pi)$. Let an indexed set of angular frequencies be defined as

$$
\begin{gathered}
\Omega_{k}=\frac{2 \pi k}{N}, k=0,1, \ldots ., N-1 \\
X[k]=X(\Omega)=\sum_{n=0}^{N-1} x[n] e^{-j(2 \pi / N) k n}
\end{gathered}
$$

5.8 Discrete Fourier Transform

Why do we need DFT?

\diamond The signal $x[n]$ and its DFT X[k] each have N samples, making the discrete Fourier transform practical for computer implementation.
\diamond Fast and efficient algorithm, know as fast Fourier transforms (FFTs), are available for the computation of the DFT.
\diamond DFT can be used for approximating other forms of Fourier series and transforms for both continuous-time and discrete-time system.
\diamond Dedicated processors are available for fast and efficient. computation of the DFT with minimal or no programming needed.

