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Abstract
We consider a general class of mathematical models (P) for cancer chemother-

apy described as optimal control problems over a fixed horizon with dynamics
given by a bilinear system and objective linear in the control. Several two- and
three-compartment models considered earlier fall into this class. While a killing
agent which is active during cell-division is the only control considered in the two-
compartment model, model (A), also two three-compartment models, models (B)
and (C), are analyzed, which consider a blocking agent and recruiting agent, re-
spectively. In model (B) a blocking agent which slows down the growth of the cells
during synthesis enabling in consequence synchronization of neoplastic population
is added. In model (C) the recruitment of dormant cells from the quiescent phase
to enable their efficient treatment by a cytotoxic drug is included. In all models
the cumulative effect of the killing agent is used to model the negative effect of the
treatment on healthy cells. For each model it is shown that singular controls are not
optimal. Then sharp necessary and sufficient conditions for optimality of bang-bang
controls are given for the general class of models (P) and illustrated with numerical
examples.
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1 Introduction

Mathematical models for cancer chemotherapy have a long history (see, for instance,
[14, 29, 34]). In the past years there has been renewed interest in these models [15, 26],
partially due to better models, but also due to a refinement of the techniques which
can be used to estimate the necessary control parameters and to analyze the problems.
In this paper we consider a specific class of mathematical models based on cell-cycle
kinetics which was introduced by Kimmel and Swierniak [21, 37] and has been analyzed in
numerous papers since (e.g. [38, 39, 40, 25, 26]), both from numerical as well as theoretical
perspectives. Here we give a review of some of these results, extend them onto a broader
class of models and outline some still open questions.

The model is based on cell-cycle kinetics and treats the cell cycle as the object of
control [36]. The cell cycle is modelled in the form of compartments which describe the
different cell phases or combine phases of the cell cycle into clusters. Each cell passes
through a sequence of phases from cell birth to cell division. The starting point is a
growth phase G1 after which the cell enters a phase S where DNA synthesis occurs. Then
a second growth phase G2 takes place in which the cell prepares for mitosis or phase M .
Here cell division occurs. Each of the two daughter cells can either reenter phase G1 or
for some time may simply lie dormant in a separate phase G0 until reentering G1, thus
starting the entire process all over again.

The simplest mathematical models which describe optimal control of cancer chemother-
apy treat the entire cell cycle as one compartment (e.g. [35]), but solutions to these single
compartment models are not very informative due to the over-simplified nature of the
model. Of the more detailed multi-compartment models, the simplest and at the same
time most natural ones still are models which divide the cell cycle into two and three
compartments, respectively [38]. In these models the G2 and M phases are combined
into one compartment. In the two-compartment model G0, G1 and S form the other
compartment while different three-compartment models arise by separating, respectively
the synthesis phase S or the dormant stage G0 for the three-compartment model. The
purpose of this division is to effectively model various drugs used in chemotherapy like
killing agents, blocking agents or recruiting agents.

The first class is represented by G2/M specific agents, which include the so-called
spindle poisons like Vincristine, Vinblastine or Bleomycin which destroy a mitotic spindle
[6] and Taxol [15] or 5-Fluorouracil [7] affecting mainly cells during their division. Killing
agents also include S specific drugs like Cyclophosphamide [15] or Metatraxate [31] acting
mainly in the DNA replication phase, Cytosine Arabinoside - Ara-C, rapidly killing cells
in phase S through inhibition of DNA polymerase by competition with deoxycytosine
triphosphate [9]. Among the blocking drugs we can mention antibiotics like Adriamycin,
Daunomycin, Dexorubin, Idarudicin which cause the progression blockage on the border
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between the phases G1 and S by interfering with the formator of the polymerase complex
or by hindering the separation of the two polynucleotide strands in the double helix [2].
Another blocking agent is Hydroxyurea - HU [28], [11] which is found to synchronize cells
by causing brief and invisible inhibition of DNA synthesis in the phase S and holding
cells in G1. The recruitment action was demonstrated [3] for Granulocyte Colony Stimu-
lating Factors - G-CSF, Granulocyte Macrophage Colony Stimulating Factors - GM-CSF,
Interleukin-3 - Il-3, specially when combined with Human Cloned Stem Cell Factor - SCF.

This classification of anticancer agents is not quite sharp and there is some controversy
in the literature concerning both the site and the role of action of some drugs. For example,
although mostly active in specific phases Cyclophosphamide and 5-Fluorouracil kill cells
also in other phases of the proliferation cycle that enables to encounter them to cycle
specific agents [6], [5]. On the other hand some antimitotic agents like curacin A [23] act
by increasing the S phase transition (blocking) and decreasing the M phase transition.

Killing agents which we consider in our model are applied in the G2/M phase which
makes sense from a biological standpoint for a couple of reasons. First, in mitosis M
the cell becomes very thin and porous. Hence, the cell is more vulnerable to an attack
while there will be a minimal effect on the normal cells. Second, chemotherapy during
mitosis will prevent the creation of daughter cells. While the killing agent is the only
control considered in the two-compartment model (A) below, in model (B) in addition a
blocking agent is considered which slows down the development of cells in the synthesis
phase S and then releases them at the moment when another G2/M specific anticancer
drug has maximum killing potential (so-called synchronization [4]). This strategy may
have the additional advantage of protecting the normal cells which would be less exposed
to the second agent (e.g. due to less dispersion and faster transit through G2/M) [10],
[1]. This cell cycle model includes separate compartments for the G0/G1, S and G2/M
phases. One of the major problems in chemotherapy of some leukemias is constituted
by the large residuum of dormant G0 cells which are not sensitive to most cytotoxic
agents [7], [17], [27]. Similar findings for breast and overian cancers were reported, e.g. in
[15, 8]. As indicated by these authors the insensitivity of dormant cells to the majority of
anticancer drugs and percentage of tumor mass resting is a fact which, if ignored, leads
not only to clinical problems but also to some erronomous theoretical considerations.
Experiments with Ara-C [9], indicated that while double injected during cell cycle or
combined with Andriamycin or anthracyclines led to serious reduction of leukemic burden
without an evident increase of negative effect on normal tissues. This therapeutic gain
was attributed to the specific recruitment inducing effect of Ara-C on leukemic cells in the
dormant phase It became possible to efficiently recruit quiescent cells into the cycle using
cytokines [41], [3] (substances playing a role in the regulation of normal hemopoiesis) like
G-CSF, GM-CSF, and especially Il-3 combined with SCF. Then, a cytotoxic agent like
Ara-C or anthracyclines may be used. Model (C) below uses separate compartments for
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the G0, G1 and S + G2/M phases and includes such a recruiting agent. Moreover, it
enables also analysis of the alteration of the transit time through G0 phase due to the
feedback mechanism that recruits the cells into the cycle when chemotherapy is applied.
In a similar way we may model other types of manipulation of the cell cycle as for example
the use of triterpenoids to inhibit proliferation and induce differentiation and apoptosis
in leukemic cells [20].

In the models (A)-(C) considered here the problem of finding an optimal cancer
chemotherapy protocol is formulated as an optimal control problem over a finite time-
interval, the fixed therapy horizon. The state variable is given by the average number of
cancer cells and the control is the effect of the drug dosages on the respective subpopula-
tion. The goal is to maximize the number of cancer cells which the agent kills, respectively
minimize the number of cancer cells at the end of the therapy session, while keeping the
toxicity to the normal tissues acceptable. The latter aspect is modelled implicitly by
including an integral of the control over the therapy interval in the objective so that
minimizing controls will have to balance the amount of drugs given with the conflicting
objective to kill cancer cells.

In this paper we formulate and analyze a general mathematical model (P) which has
an arbitrary number of compartments. The models mentioned above all fall into this
class and other compartmental models whose dynamics arises from balance equations
with constant transition rates will fit this class as well. For example, more complicated
models involving drug resistance match this framework with the extra compartments
representing various levels of drug resistant sub-populations of cancer cells. Analyzing
the general model (P) has the obvious advantage that the mathematics which is common
to all these models only needs to be carried out once. But clearly for a complete analysis
of the problems, the specific forms of the data for the models (matrices, parameters etc.)
then need to be taken into account.

Analytical approaches to these models are based on applications of the Pontryagin
Maximum Principle [33] which results in both bang-bang and singular controls as candi-
dates for optimality. While bang-bang controls correspond to treatment protocols which
alternate maximum doses of chemotherapy with rest periods when no drug is adminis-
tered, singular controls correspond to applying varying doses at less than their maximum.
Bang-bang controls, which are widely used as protocols in medical treatments, are the
more natural choice as candidates for optimality, and it even has been observed numer-
ically that singular protocols actually give the worst performance [38, 12, 13]. In the
papers [25, 26] singular arcs were indeed excluded from optimality for models (A) and
(B) with the use of high-order necessary conditions for optimality. In this paper we ex-
tend these results to model (C). This result seems to be important from a practical point
of view since it indicates that in the case of cell recruitment bang-bang protocols should
be considered as optimal strategies. Once singular controls are excluded from optimality,
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bang-bang controls become the natural candidates. However, the Maximum Principle
only gives first order necessary conditions for optimality and therefore the trajectories it
identifies may not be optimal. In fact, some of them, like the singular arcs for the mod-
els (A)-(C), are maximizing rather than minimizing. In [25] examples of both optimal
and non-optimal bang-bang controls are given for model (A). It is therefore important
to further investigate the optimality of these candidates. While the analysis of singular
controls in section 3 depends on the matrices in the dynamics and thus necessarily is
model specific, in section 4 we formulate an algorithm for the general model (P) which
allows to determine whether bang-bang controls which satisfy the conditions of the Max-
imum Principle are locally optimal (Theorem 4.1) or not (Theorem 4.2). For the models
(A)-(C) considered in this paper, the general structure simplifies somewhat because of
special properties of the matrices in the models and the simplified formulas are given in
Corollary 4.1. The algorithm as presented applies to any model which fits the general
class (P).

2 Mathematical Models for Cancer Chemotherapy

We formulate a general n-compartment model for cancer chemotherapy as an optimal
control problem over a fixed therapy interval with dynamics described by a bilinear system.
Let N = (N1, . . . , Nn)T denote the state-vector with Ni denoting the number of cancer
cells in the i-th compartment, i = 1, . . . , n. The control is a vector u = (u1, . . . , um)T with
ui denoting the drug dosage administered. The control set U is a compact m-dimensional
interval of the form [α1, β1] × · · · × [αm, βm] with each interval [αi, βi] ⊂ [0,∞). Let A
and Bi, i = 1, . . . , m, be constant n × n matrices, let r = (r1, . . . , rn) be a row-vector
of positive numbers and let s = (s1, . . . , sm) be a row-vector of non-negative numbers.
The vectors r and s represent subjective weights in the objective. We then consider the
following optimal control problem:

(P) minimize the objective

J = rN(T ) +

∫ T

0

su(t)dt → min (1)

over all Lebesgue-measurable functions u : [0, T ] → U subject to the dynamics

Ṅ(t) = (A +
m∑

i=1

uiBi)N(t), N(0) = N0. (2)

We briefly recall three two- and three-compartment models which fit into this general
class. For a more detailed description of the models we refer the reader to [38].
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Model (A): In a 2-compartment model the phases G0, G1 and S are clustered into
the first compartment, G2 and M are combined into the second compartment, and only
a killing agent u = u1 is considered. Thus n = 2, m = 1, and the matrices A and B = B1

are given by

A =

( −a1 2a2

a1 −a2

)
, B =

(
0 −2a2

0 0

)
. (3)

The ai are positive coefficients related to the mean transit times of cells through the i-th
compartment.

Model (B): In this three-compartment model in addition a blocking agent v = u2 is
considered which is active in the synthesis phase S and thus S is modelled as a separate
compartment. Now n = 3, m = 2, and the matrices are given by

A =



−a1 0 2a3

a1 −a2 0
0 a2 −a3


 , (4)

and

B1 =




0 0 −2a3

0 0 0
0 0 0


 , B2 =




0 0 0
0 a2 0
0 −a2 0


 . (5)

In both models the control u = u1 represents the dose of the killing agent administered
with the value u = 0 corresponding to no treatment and u = 1 corresponding to a
maximum dose. It is assumed that the dose stands in direct relation to the fraction
of cells which are being killed in the G2/M phase. Therefore only the fraction 1 − u
of the outflow of cells from the last compartment undergoes cell division and reenters
the first compartment. However, all cells leave compartment G2/M . In model (B) in
addition the blocking agent v = u2 is applied to slow the transit times of cancer cells
during the synthesis phase S. As a result the flow of cancer cells from the second into the
third compartment is reduced by a factor 1 − v of its original flow to (1 − v(t))a2N2(t),
0 ≤ v(t) ≤ vmax < 1. Here the control v(t) = 0 corresponds to no drug being applied
while a maximal reduction occurs with a full dose vmax.

Model (C): A second 3-compartment model can be derived from model (A) if the
dormant phase G0 is considered separately. In this case the newly born cells either enter
G1 and immediately start the cell division process or they may enter the dormant stage
G0. Let b0 and b1, b0 + b1 = 1, be the corresponding probabilities. In addition in this
model we also consider a recruiting agent w = u3 which is applied to reduce the average
sejour time in the quiescent phase. As a result the average transit time through the
compartment G0 is reduced resulting in the outflow being increased by a factor 1 + w,
0 ≤ w ≤ wmax. Here again the control w = 0 corresponds to no drug being applied
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while w = wmax occurs with a full dose. For this model it is more natural to label the
compartments i = 0, 1, 2 and the matrices for this 3-compartment model are given by

A =



−a0 0 2b0a2

a0 −a1 2b1a2

0 a1 −a2


 , (6)

and

B1 =




0 0 −2b0a2

0 0 −2b1a2

0 0 0


 , B3 =



−a0 0 0
a0 0 0
0 0 0


 . (7)

For all three models we take as objective

J = rN(T ) +

∫ T

0

u(t)dt, (8)

(i.e. s1 = 1 and s2 = s3 = 0 in the general formulation (1)). The penalty term rN(T ) in
the objective represents a weighted average of the total number of cancer cells at the end of
an assumed fixed therapy interval [0, T ]. The number of cancer cells which do not undergo
cell division at time t and are killed are given by the portion u(t) of the outflow of the last
compartment, i.e. u(t) is proportional to the fraction of ineffective cell divisions. Since
the drug kills healthy cells at a proportional rate, the control u(t) is also used to model
the negative effect of the drug on the normal tissue or its toxicity. Thus the integral in the
objective models the cumulative negative effects of the treatment. In the 3-compartment
model (B) it is assumed that the negative influence of the blocking agent v which does not
kill cells is negligible and it is therefore not included in the objective. However, since as
mentioned above some blocking agents exhibit also killing effects it may be reasonable to
include their cytotoxicity on normal tissues. It could easily be incorporated with a small
weight s2 without changing the structure of the results. For the 3-compartment model
(C) the only reasonable choice for the recruitment agent is weight s3 = 0.

Returning to the general model (P ), we also make the assumption that the control
system is internally positive [18]:

(+) The first orthant of the control system is positively invariant, that is for any admis-
sible control u, if Ni(0) > 0 for all i = 1, . . . , n, then Ni(t) > 0 for all i = 1, . . . , n,
and all times t > 0.

Thus the obvious modelling state-space constraints Ni(t) ≥ 0 for i = 0, 1, . . . , n, need
not be included in our model explicitly and the analysis simplifies. A simple sufficient
condition for (+) to hold (for example, see [18]) is that
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(M) all the matrices A +
∑m

i=1 uiBi, u ∈ U , are so-called M -matrices, i.e. have negative
diagonal entries, but non-negative off-diagonal entries.

This condition is natural and will be satisfied for any compartmental model whose dynam-
ics is given by balance equations where the diagonal entries correspond to the outflows
from the i-th compartments and the off-diagonal entries represent the inflows from the
i-th into the j-th compartment, i 6= j. It is satisfied for each of the models (A), (B)
and (C) described above. More generally, if condition (+) were violated, this is a strong
indication that the modelling is inconsistent.

Necessary conditions for optimality are given by the Pontryagin Maximum Principle
[33]: if u∗ = (u∗1, . . . , u

∗
m) is an optimal control, then it follows that there exists an

absolutely continuous function λ, which we write as row-vector, λ : [0, T ] → (Rn)∗,
satisfying the adjoint equation

λ̇ = −λ(A +
m∑

i=1

u∗i Bi), λ(T ) = r, (9)

such that the optimal control u∗ minimizes the Hamiltonian H over the control set along
(λ(t), N∗(t)),

H = λAN +
m∑

i=1

ui (si + λBiN) . (10)

If the control system satisfies condition (M), then it follows from the adjoint equation
(9) that for any admissible control the first orthant in λ-space is negatively invariant
under the flow of the adjoint system, i.e. if λi(T ) > 0 for all i = 1, . . . , n, then λi(t) > 0
for all i = 1, . . . , n, and all times t ≤ T . In this case, since N(0) and λ(T ) have positive
components, it follows that all states Ni and costates λi are positive over [0, T ].

Corollary 2.1 If condition (M) is satisfied, then all states Ni and costates λi are positive
over [0, T ].

Since the control set is a cube, the minimization of the Hamiltonian splits into m
separate one-dimensional minimization problems. If we define the i-th switching function
as

Φi = si + λBiN, (11)

then optimal controls satisfy

u∗i (t) =

{
αi if Φi(t) > 0
βi if Φi(t) < 0

. (12)
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Thus for models (A)-(C) we have

u∗(t) =

{
0 if Φ1(t) > 0
1 if Φ1(t) < 0

, (13)

v∗(t) =

{
0 if Φ2(t) > 0

vmax if Φ2(t) < 0
(14)

and

w∗(t) =

{
0 if Φ3(t) > 0

wmax if Φ3(t) < 0
(15)

where Φ1(t) = 1 + λ(t)B1N(t), Φ2(t) = λ(t)B2N(t) and Φ3(t) = λ(t)B3N(t).
A priori the controls are not determined by the minimum condition at times where

Φi(t) = 0. However, if Φi(t) vanishes on an open interval, also all its derivatives must
vanish and this may determine the control. Controls of this kind are called singular while
we refer to piecewise constant controls as bang-bang controls. Optimal controls then need
to be synthesized from these candidates.

3 Singular Controls

In this section we show how singular arcs can be excluded from optimality for the models
(A)-(C) using high-order necessary conditions for optimality. These calculations are model
specific and we refer the reader to [25] and [26] for the details of calculations for models
(A) and (B), but we give the calculations for model (C). We refer to the killing agent as
u, the blocking agent as v, and the recruiting agent as w. If any of these controls are
singular on an open interval I ⊂ [0, T ], then the corresponding switching function and all
its derivatives must vanish on I. Singular controls are calculated by differentiating the
switching functions in time until the control variable explicitly appears in the derivative,
say in Φ(r)(t), and then solving the resulting equation Φ(r)(t) ≡ 0 for the control. For a
single-input system which is linear in the control it is known [24] that r must be even, say
r = 2k, and k is called the order of the singular arc on the interval I. It is a necessary
condition for optimality of a singular arc of order k, the so-called generalized Legendre-
Clebsch condition [24], that

(−1)k ∂

∂u

d2k

dt2k

∂H

∂u
≥ 0. (16)

Note that the term ∂H
∂u

in (16) represents the switching function for the problem. This
framework directly applies to the 2-compartment model (A) which has a scalar control.
Elementary and direct calculations [25] show that in this case singular arcs are of order 1
and that

∂

∂u

d2

dt2
∂H

∂u
= 4a1a2 > 0 (17)
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violating the Legendre-Clebsch condition. For the 3-compartment model (B) the gener-
alized Legendre-Clebsch condition (16) still applies to the first control u if we freeze the
second control v. Assuming v is constant, it can be shown that a singular control u must
be of order 2, but again (16) is violated. Direct, but longer calculations verify that

∂

∂u

d4

dt4
∂H

∂u
= −12a1a2a

2
3(1− v)(a1 + a2(1− v))λ1(t)N2(t) < 0. (18)

(See [26], but note that we replaced what was v in this paper with 1− v. This way, zero
values of the control correspond to no treatment.) Furthermore, if the control v is singular
on an interval I, then it can easily be seen that u also must be singular on I. In this case
it is a necessary condition for optimality, the so-called Goh condition [24], that on I we
have

∂

∂v

d

dt

∂H

∂u
≡ 0. (19)

However, a direct calculation gives

∂

∂v

d

dt

∂H

∂u
= 2a2a3λ1(t)N2(t) > 0 (20)

violating the Goh-condition [26]. Note that these results strongly depend on the fact that
states and also multipliers are positive.

We now show how the optimality of singular controls can be excluded for the 3-
compartment model (C). Suppose the control u is singular on an open interval I ⊂ [0, T ]
and consider the system as a single-input optimal control problem with drift A + wB3.
For the moment also assume that the control w is constant over I. Then the first two
derivatives of the switching function Φ1(t) = 1 + λ(t)B1N(t) are given by

Φ̇1(t) = λ(t)[A + wB3, B1]N(t) (21)

Φ̈1(t) = λ(t)[A + uB1 + wB3, [A + wB3, B1]]N(t) (22)

where [F, G] = GF − FG denotes the commutator of matrices. (The opposite sign has
been chosen to be consistent with the definition of the Lie-bracket of linear vector fields.)
Note that

∂

∂u

d2

dt2
∂H

∂u
= λ(t)[B1, [A + wB3, B1]]N(t). (23)

Direct calculations verify that this double bracket term satisfies the relation

[B1, [A + wB3, B1]] = −4a1a2b1B1. (24)

Hence

∂

∂u

d2

dt2
∂H

∂u
= −4a1a2b1λ(t)B1N(t)

= 4a1a2b1 > 0 (25)
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violating the Legendre-Clebsch condition. Here, in the last step we use that the switching
function vanishes identically on I,

Φ1(t) = 1 + λ(t)B1N(t) ≡ 0. (26)

These calculations therefore exclude the optimality of singular controls u when w is con-
stant. It might still be possible, however, that w is singular and not constant over any
subinterval J ⊂ I. In this case w also must be singular on I. It turns out that for this
example the Goh-condition is actually satisfied and thus a further analysis of necessary
conditions becomes necessary. Now we also have on I that

Φ3(t) = λ(t)B3N(t) = a0N0(t)(λ1(t)− λ0(t)) ≡ 0 (27)

and thus λ1(t) ≡ λ0(t). But

λ̇0(t) = a0(λ0(t)− λ1(t))(1 + w(t)) ≡ 0 (28)

and thus both λ0 and λ1 are constant. Since thus

0 ≡ λ̇1(t) = a1(λ1(t)− λ2(t)), (29)

it indeed follows that

λ0(t) ≡ λ1(t) ≡ λ2(t) ≡ const = λ̄ > 0. (30)

But then the adjoint equation for λ2 becomes

0 ≡ λ̇2(t) = a2 [λ2(t)− 2(1− u(t))(b0λ0(t) + b1λ1(t))]

= a2λ̄ (2u(t)− 1) (31)

implying u(t) ≡ 1
2
. (In particular, this also verifies that u must be singular if w is.) Since

u is singular, by (26) we also have

0 ≡ 1− 2a2N2(t)λ̄ (32)

and thus N2(t) ≡ N̄2 = const. But then also

0 ≡ Ṅ2(t) = a1N1(t)− a2N2(t) = a1N1(t)− a2N̄2 (33)

implying N1(t) ≡ N̄1 = const as well. Thus

0 ≡ Ṅ1(t) = a0N0(t)(1 + w(t))− a1N̄1 + 2b1a2N̄2(1− u(t))

= a0N0(t)(1 + w(t))− (1− b1)a2N̄2. (34)
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But then

Ṅ0(t) = −a0N0(t)(1 + w(t)) + 2b0a2N̄2(1− u(t))

= −a0N0(t)(1 + w(t)) + (1− b1)a2N̄2 ≡ 0 (35)

and thus also N0(t) ≡ N̄0 = const. In fact, if u(t) ≡ 1
2
, then the matrix A + 1

2
B1 + wB3

has eigenvalue 0 with left-eigenvector λ̄ = (1, 1, 1) and right-eigenvector N̄ = (N̄0, N̄1, N̄2)
which gives an equilibrium for the system and adjoint equations. But this finally implies
that

(1 + w(t)) = b0
a2N̄2

a0N̄0

= const. (36)

Thus, if at all admissible, this control w is constant and thus the optimality of the overall
control pair (u,w) is excluded by the considerations above. In summary, neither of the
controls u or w can be singular on any subinterval. Summarizing we have:

Theorem 3.1 For models (A)-(C) optimal controls are not singular on any subinterval
I ⊂ [0, T ]. ¤

4 Bang-bang Controls

Once singular controls have been eliminated from optimality, bang-bang controls become
the natural candidates. We now state sharp necessary and sufficient conditions for opti-
mality of bang-bang controls for the general n-compartment model (P ).

Let (N∗, u∗) be a reference extremal pair where all the components of u∗ are bang-bang
controls with switchings at times tk, k = 1, . . . ,m, 0 < tm < · · · < t1 < t0 = T and N∗
is the corresponding trajectory. Denote the corresponding adjoint variable by λ∗. We
assume that (i) at every switching tk only one of the components of the control has a
switching. This implies that the switching functions are absolutely continuous functions
with derivatives given by

Φ̇i(t) = λ(t)

[
A +

i−1∑
j=1

ujBj +
m∑

j=i+1

ujBj, Bi

]
N(t). (37)

We then also assume that (ii) at each switching tk the derivative of the corresponding
switching function Φi, i = i(k), does not vanish at tk, Φ̇i(tk) 6= 0, and we call a triple
Γ = (N∗, u∗, λ∗) along which conditions (i) and (ii) are satisfied a regular strictly bang-bang
extremal lift. We construct a parametrized family of regular strictly bang-bang extremal
lifts which contains Γ by integrating the dynamics and the adjoint equation backward
from the terminal time T with the terminal condition N(T ) = p being a free parameter.

12



The terminal values for the adjoint variables are all the same and are given by the row-
vector r of weights for the coordinates of the terminal state N(T ). Note, however, that
positivity of the trajectories needs to be enforced once we integrate trajectories backward
from a free terminal point p. Choosing the controls ui = ui(t, p) to maintain the minimum
condition of the Maximum Principle, the system and adjoint equation are thus given by

Ṅ(t, p) = (A +
m∑

i=1

uiBi)N(t, p) (38)

and

λ̇(t, p) = −λ(t, p)(A +
m∑

i=1

uiBi),

with terminal values
N(T, p) = p and λ(T, p) = r. (39)

Setting p∗ = N∗(T ), the controls u(t, p∗) are given by the reference controls u∗ and N(t, p∗)
and λ(t, p∗) are the reference trajectory and corresponding multiplier. It can be shown that
there exists a neighborhood W of p∗ and continuously differentiable functions τk defined on
W , k = 1, . . . , m, such that for p ∈ W the controls u(·, p) are bang-bang with switchings
in the same order as the reference control at the times 0 < τm(p) < · · · < τ1(p) < T
and the corresponding triples Γp = (N(·, p), u(·, p), λ(·, p)) for p ∈ W are regular strictly
bang-bang extremal lifts. This allows to use field-theoretic concepts to develop sufficient
conditions for optimality. Essentially, if the flow of the system is a diffeomorphism away
from the switching surfaces and if it crosses the switching surfaces transversally, then using
the method of characteristics a differentiable solution to the Hamilton-Jacobi-Bellman
equation can be constructed [30]. This then implies optimality of the flow.

Theorem 4.1 Let Γ = (N∗, u∗, λ∗) be a regular strictly bang-bang extremal lift without
simultaneous switchings and let Φ∗

i (t) = si + λ∗(t)BiN∗(t) be the switching function asso-
ciated with the control ui, i = 1, . . . ,m. Denote the switching times of the controls by tk,
k = 1, . . . , m, 0 < tm < · · · < t1 < t0 = T and let uk

i denote the constant values of the
controls on the interval (tk, tk−1). For the k-th switching let ι = ι(k) be the indicator of
the control that switches and denote the absolute jump in the control by θι, i.e. θι = βi−αi
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if ι(k) = i. Set S−0 = 0 and for k = 1, . . . ,m, define

S+
k = exp




(
A +

m∑
j=1

uk
j Bj

)T

(tk−1 − tk)


 S−k−1 (40)

exp

((
A +

m∑
j=1

uk
j Bj

)
(tk−1 − tk)

)
, (41)

Gk = − θι∣∣∣Φ̇∗
ι (tk)

∣∣∣
(
λ∗(tk)Bι + NT

∗ (tk)B
T
ι S+

k

)
, (42)

S−k =
(
BT

ι λT
∗ (tk)Gk + S+

k

) (
Id +

BιN∗(tk)Gk

1−GkBιN∗(tk)

)
(43)

If for k = 1, . . . , m, we have that
∣∣∣Φ̇∗

ι (tk)
∣∣∣ + θι

(
λ∗(tk)Bι + NT

∗ (tk)B
T
ι S+

k

)
BιN∗(tk) > 0, (44)

then all the matrices S−k , k = 1, . . . , m, are well-defined and u∗ is a relative minimum
for the n-compartment model. More precisely, there exists a neighborhood W of N∗(T )
such that the flow σ restricted to [0, T ]×W defines a field of strictly bang-bang extremals
without simultaneous switchings and u∗ is optimal relative to any other control whose
trajectory lies in the image R of [0, T ]×W under the flow map

σ : [0, T ]×W → R, (t, p) 7→ (t, x(t, p)). (45)

A special version of this algorithm has been proven for model (A) in [25] and for model
(B) in [26]. The algorithm here applies to the general model (P) and differs from those
given in [25] and [26] in the extra term θιλ∗(tk)B2

ι N∗(tk) in (44). The reason is that for
the general dynamics some simplifying properties of these models no longer apply (see
Corollary 4.1 below). The proofs of Theorem 4.1 and Theorem 4.2 below are lengthy and
are omitted since they follow the same pattern as for the result proven in [26], but with
the required technical modifications to allow for a general n-dimensional dynamics.

Theorem 4.2 With the notation of Theorem 4.1 assume that the transversality condition
∣∣∣Φ̇∗

ι (tk)
∣∣∣ + θι

(
λ∗(tk)Bι + NT

∗ (tk)B
T
ι S+

k

)
BιN∗(tk) > 0 (46)

is satisfied for k = 1, . . . , h− 1, but that
∣∣∣Φ̇∗

ι (th)
∣∣∣ + θι

(
λ∗(th)Bι + NT

∗ (th)B
T
ι S+

h

)
BιN∗(th) < 0. (47)
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Then there exists a neighborhood W of p∗ = N∗(t) such that the flow σ restricted to
Dh = {(t, p) : th < t ≤ T, p ∈ W} defines a field of regular strictly bang-bang extremals
without simultaneous switchings and u∗ is optimal relative to any other control whose
trajectory lies in the image Rh = σ (Dh). But u∗ is no longer optimal for initial times
t ≤ th.

t
T

N

q

Sh S1

p

p'

Figure 1: Optimal and non-optimal switchings

Figure 1 visualizes the geometric meaning of the transversality conditions (46) and
(47). If the combined flow crosses the switching surfaces transversally like for the switch-
ing surface S1 (condition (46)) is satisfied), the trajectories cover the time-state-space
injectively and no local improvements are possible at such a switching. But if the flow
reflects off the switching surface like for the switching surface Sh (condition (47) holds),
then it is possible to do better even locally with exactly one switching less by eliminat-
ing the corresponding junction. In this case there exist exactly two trajectories in our
parametrization of bang-bang controls which start from points q close to the switching
surface Sh. Of these the one which ends at the terminal point p and does not encounter Sh

satisfies the sufficient conditions for optimality given in Theorem 4.1 and gives a strong
local minimum. The trajectory which reflects off Sh and ends in p′ is not optimal by The-
orem 4.2. Intuitively we can say, that we can move down the flow to avoid the transversal
fold. The switching surface Sh exactly acts like an envelope in the Calculus of Variations
and local optimality of the flow ceases there.

Corollary 4.1 For the compartmental problems (A)-(C) described above, the expressions
in (44), respectively (46), and (47) can be simplified to

∣∣∣Φ̇∗
ι (tk)

∣∣∣ + θιN
T
∗ (tk)B

T
ι S+

k BιN∗(tk) > 0 (48)
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is satisfied for k = 2, . . . , h− 1, but

∣∣∣Φ̇∗
ι (th)

∣∣∣ + θιN
T
∗ (th)B

T
ι S+

h BιN∗(th) < 0. (49)

Proof. This follows from special properties of the matrices Bι which make each of the
terms λ∗(tk)B2

ι N∗(tk) vanish. For the matrices B1 in all the model this is trivial since
B2

1 = 0. For B2 and B3 this holds since we have the relations B2
2 = a2B2 and B2

3 = −a0B3.
This implies

λ∗(tk)B2
2N∗(tk) = a2λ∗(tk)B2N∗(tk) = −a2s2 (50)

where the last equality follows since the switching function Φ2 = s2 + λB2N vanishes at
the switching time tk. For model (B) we have assumed s2 = 0 and thus this term vanishes.
Similarly

λ∗(tk)B2
3N∗(tk) = −a0λ∗(tk)B3N∗(tk) = a0s3 (51)

which vanishes since s3 = 0. Furthermore, in these cases we have therefore S+
1 = 0 and

thus condition (48) is trivially satisfied for k = 1. ¤

5 Numerical Simulations

Examples of both locally optimal and non-optimal bang-bang extremal trajectories for
the two-compartment model (A) have been given in [25]. Here we include some new
simulations for the three-compartment models (B) and (C). In order to facilitate the
computations (which illustrate the mathematical theory) we integrate the systems back-
ward from the terminal time T and take the terminal values of the states as parameters,
p = N(T ).

The data for model (B) with a blocking agent are given by a1 = 0.197, a2 = 0.395
and a3 = 0.107, vmax = 0.3, and the weights in r have been chosen as r1 = 1, r2 = 0.5
and r3 = 1. The terminal time is T = 7 and the parameter values are p1 = p2 = 5
and p3 = 8.5. For these parameters there are three switchings in the controls and the
results are summarized in Table 1 below. Since all transversality conditions are positive,
the corresponding controls are locally optimal. Graphs of the corresponding controls and
states are given in Figures 2-4.

Table 1. Data for the switchings for model (B)

switching time switch in control transversality condition
t1 = 3.56 v .1541
t2 = 3.28 u .2905
t3 = 3.09 v .1191
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Figure 2: Killing agent
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Figure 3: Blocking agent
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Figure 4: States

The data for model (C) with a recruiting agent were chosen as a0 = 0.05, a1 = 0.5
and a2 = 1, wmax = 6, b0 = 0.9 = 1 − b1 and the weights in r were as above, r0 = 1,
r1 = 0.5 and r2 = 1. Now the terminal time is T = 4 and the parameter values are
p0 = 2.2, p1 = 2.145 and p2 = 1.08. For these parameters there are two switchings in
the controls, one each for the killing and recruiting agent. The results are summarized
in Table 2 below. Since all transversality conditions are positive, these controls are also
locally optimal. Graphs of the corresponding controls and states are given in Figures 5-7.
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Table 2. Data for the switchings for model (C)

switching time switch in control transversality condition
t1 = 1.96 u .7445
t2 = 0.28 w 1.3456
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Figure 5: Killing agent
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Figure 6: Recruiting agent
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Figure 7: States
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6 Discussion

In this paper we discussed the cell-cycle-phase dependence of cytotoxic drug action in the
context of optimization of cancer chemotherapy. By many authors, besides the emergence
of drug resistance (see, e.g. [16] [22]), phase sensitivity and cycle specificity are viewed as
one of the major obstacles against successful chemotherapy [15], [7].

The simplest cell-cycle-phase dependent models of chemotherapy can be classified
based on the number of compartments and types of drug action modelled. In all these
models the attempts at finding optimal controls have been confounded by the presence
of singular and periodic trajectories, and multiple solutions. However, in this paper we
have developed efficient analytical and numerical methods which enable to overcome the
difficulties. In simpler cases, it is possible to eliminate singular protocols as non-optimal
and give sufficient conditions for optimality of bang-bang trajectories. Moreover, we
have formulated and solved a quite general multicompartment model of chemotherapy
which enables the discussion of other types of protocols and other phenomena than those
considered in the paper.

All possible applications of the mathematical models of chemotherapy are contingent
on our ability to estimate their parameters. Recently there has been progress in that
direction, particularly concerning precise estimation of drug action in culture and estima-
tion of cell cycle parameters of tumor cells in vivo. The stathmokinetic or “metaphase
arrest” technique consists of blocking cell division by an external agent (usually a drug,
e.g. vincristine or colchicine). The cells gradually accumulate in mitosis, emptying the
postmitotic phase G1 and with time also the S phases. Flow cytometry allows precise
measurements of the fractions of cells residing in different cell cycle phase. The pattern
of cell accumulation in mitosis M depends on the kinetic parameters of the cell cycle and
is used for estimation of these parameters. Exit dynamics from G1 and transit dynamics
through S and G2 and their subcompartments can be used to characterize very precisely
both unperturbed and perturbed cell cycle parameters. A true arsenal of methods have
been developed to analyze the stathmokinetic data. Application of these methods allow
quantification of the cell-cycle-phase action of many agents.

One of the interesting findings was the existence of after effects in the action of many
cytotoxic agents [19]. The action of these drugs especially while high dosed may extend
beyond the span of a single cell cycle. For example, cells blocked in the S-phase of the
cell cycle and then released from the block, may proceed apparently normally towards
mitosis, but then fail to divide, or divide, but not be able to complete the subsequent
round of DNA replication. In some experiments it was possible to trace the fates of
individual cells and conclude that their nuclear material divided, but the cytoplasmic
contents failed to separate. As indicated for example in [31], [32], the after effects due to
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accumulation of drugs (in this case methatrexate) result in great interindividual differences
of the effectiveness of treatment.

The consequence of the after effects is that it may be difficult to infer the long-
term effects of cytotoxic drugs based on short term experiments like the stathmokinetic
experiment. One way of testing this assertion is to carry out both types of experiments,
short term and long term, subjecting cells to the action of the same concentration of the
same drug. We may then estimate the parameters of the cell cycle and of drug action
based on the short-term experiment, substitute them into a mathematical model and try
to predict the results of the long-term experiment. Of course modelling the after effects
leads to the growth of the dimension of the system of state equations and makes the
explicit results of our models questionable. It seems, however, that it still is possible to
place the models in the general model class (P) discussed in the paper.

The traditional area of application of ideas of cell synchronization, recruitment and
rational scheduling of chemotherapy including multidrug protocols, is in the treatment
of leukemias. It is there where potentially the cell-cycle-phase dependent optimization is
especially useful. Moreover, our results could also be applied (with small modification)
to other types of cell cycle manipulations like induction of apoptosis and differentiation
[20].

Acknowledgement. We would like to thank Tim Brown of Southern Illinois Univer-
sity in Edwardsville who carried out the numerical simulations shown here in connection
with his Master’s Thesis.
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