The stifle joint, a common location for lameness in dogs, is a complex arrangement of osseous, articular, fibrocartilaginous, and ligamentous structures. The small size of its component structures, restricted joint space, and its intricate composition make successful diagnostic imaging a challenge. Different tissue types and their superimposition limit successful diagnostic imaging with a single modality. Most modalities exploit the complexity of tissue types found in the canine stifle joint. Improved understanding of the principles of each imaging modality and the properties of the tissues being examined will enhance successful diagnostic imaging.

Since the discovery of X-rays by Roentgen in 1895, their use in diagnostic imaging techniques has evolved. The digital era with enhanced computer capability has resulted in substantial improvements in image quality with reduced acquisition time. Ultrasonography developed in the 1940s uses sound waves and thermal imaging developed in the 1950s uses temperature measurements to generate diagnostic images. Diagnostic magnetic resonance imaging (MRI) reported in 1971 uses magnetic resonance rather than ionizing radiation with improved image resolution and patient safety. In the 1990s, multidetector computed tomography (CT) technology allowed for the generation of “stacked” or 3-dimensional (3D) images that could be computer manipulated for presurgical planning. The purpose of this review is to outline the principles of each of modality and to describe the utility of each for imaging the canine stifle joint.

RADIOGRAPHY

Because tissues do not absorb X-rays uniformly, images have regions of white, black, and shades of gray. Soft tissue absorbs fewer X-rays than bone resulting in images that are shades of gray whereas bone appears radiopaque.2 These properties of energy absorption make radiographs ideal for orthopedic conditions such as those that affecting the stifle and radiography remains the most important initial diagnostic step in determining the cause of disease. Radiographic evidence of disease may include: compression of the infrapatellar fat pad, increased synovial fluid volume or thickening of the synovial lining, altered joint space, decreased or increased subchondral bone opacity, mineralization of soft tissues, intraarticular mineralization, joint displacement, or joint malformation.2 Standard radiographic projections (mediolateral and craniocaudal) are used to make theses assessments and determine if further diagnostic tests are needed. If the craniocaudal view is not taken with the limb in extension, a normal joint space may appear collapsed leading to misinterpretation.

Osteoarthritis (OA) has many different causes, either primary in geriatric animals or secondary to stresses on the joint.2–5 Evaluation of the subchondral bone, articular margins, and regions of ligament, tendon, and joint capsule attachment are easily assessed on conventional radiographs.4 The most common radiographic changes noted with stifle OA include narrowing of the joint space; subchondral sclerosis of the tibial plateau; osteophytosis of the trochlear ridges, patella, fabella, ligament attachments, and caudal tibial plateau; cystic lesions; intraarticular mineralization; bone remodeling; and joint capsule distention identified as proximal displacement of the infrapatellar fat pad and caudal displacement of the capsule. Narrowing of the joint space should be assessed during a weight bearing study; however, it can be evident in dogs with advanced disease.2,4,6–8

Cranial cruciate ligament (CCL) rupture is the most common disease of the canine stifle joint. In some dogs it can be difficult to diagnose by palpation for cranial drawer or tibial compression tests.9–11 Radiographic signs include intraarticular swelling, cranial displacement of the tibia in the mediolateral view with tarsal flexion applied (Cazieux-positive sign), and in chronic cases, OA changes.4,12 The tibial compression stress radiograph has been reported useful in the diagnosis of partial CCL rupture. This radiographic projection requires the stifle to be in 90° of flexion with manual flexional forces applied to the tarsus. Flexion of the hock joint allows the tibia to move cranially so it can be evaluated with during this stress view.9–11

Patellar luxation is also frequently reported in the canine stifle and can easily be diagnosed by palpation of the displaced patella in most cases; however, radiographs
may be helpful in assessing alignment of the femur and tibia as well as malformations and rotation. Radio-graphic identification of the patella medial or lateral to the distal aspect of the femur in the craniocaudal view, or superimposed on the femoral condyles in the mediolateral view is diagnostic for patella luxation. A skyline view generated by a cranioproximal 100° craniodistal oblique projection can be used to detect a shallow trochlear groove. The craniocaudal view can be used to demonstrate proximal tibial rotation, coxa vara, femoral or tibial torsion, proximodistal patella alignment, and abnormal angulation of the femorotibial articulation and to quantify any secondary OA. Other patellar abnormalities that can be identified are patellar fractures, thickening of the patellar tendon, and patellar tendon rupture.

Osteochondrosis, a disruption of osteochondral ossification resulting in cartilaginous lesions, commonly involves the medial or lateral femoral condyle. Radiographic findings include: subchondral bone defect, sclerosis of the defect margins, osteochondral fragments, and secondary OA. Standard mediolateral and craniocaudal views can be used to demonstrate the defect most often, but a mediolateral oblique view or craniocaudal view with the stifle flexed to an angle of 35–45° may be necessary in some dogs.

Neoplasia of the stifle is uncommon and synovial cell sarcoma (Fig 2) is the most common type observed. This tumor arises from the periarticular soft tissues of the stifle and invades the joint and adjacent bone. Standard radiographic views may reveal soft tissue swelling and periosteal proliferation. The most predominant features are multifocal areas of bone destruction in periarticular locations extending into articular regions with possible patella, fabella, tibia, or femur involvement; however, biopsy is needed for confirmation. Other neoplasms include: fibrosarcoma, rhabdomyosarcoma, fibromyxosarcoma, histiocytic sarcoma, liposarcoma, chondrosarcoma, and undifferentiated sarcoma. Synovial osteochondromas affecting the stifle are benign and typically well-defined, rounded with multiple calcified intraarticular nodules.

Joint fluid analysis and cytology, immune profile, and infectious titers are used in conjunction with radiography to differentiate possible causes of joint infection. Radiographs of stifles with infectious arthritis in the early stages may only reveal soft tissue swelling of the stifle joint. In more advanced cases, subchondral bone erosion and sclerosis, periarticular new bone formation, uneven margins of the joint space, osteolysis and signs of OA are noted. There are many causes of noninfectious arthritis including: rheumatoid arthritis, systemic lupus erythematosus (SLE), feline polyarthritis, and villonodular synovitis, which typically result in soft tissue swelling apparent on radiographic views. Rheumatoid arthritis may also have cyst-like lesions, narrowing of the joint space and regions of lysis. The erosive version of feline polyarthritis is also associated with radiographic subchondral bone defects, whereas radiographic findings of villonodular synovitis is most associated with cortical defects. Long digital extensor tendon avulsion is frequently associated with mineralization of the tendon, avulsion fragments near the extensor fossa, or as an osseous defect at the fossa. Avulsion fractures of the tibial crest can be identified on lateral radiographic projections. Capsular, ligamentous, and tendinous injury can also have distinct radiographic findings including periarticular swelling, avulsion fractures at attachment sites, instability or subluxation, and spatial

Figure 1 Mediolateral radiographs. (A) A thickened and inflamed patellar tendon (white arrow) 8 weeks after tibial plateau leveling osteotomy. (B) Patellar tendon rupture. Note the proximal position of the patella at the supracondylar region.
derangements. Most of the abnormalities are seen on standard radiographic views, but stress views may be necessary to solidify the diagnosis. For most diseases of the stifle, radiography may be sufficient to make a diagnosis when clinical signs and physical examination findings are included in the evaluation; however, if radiographic assessment is inconclusive, more advanced imaging is necessary.

ULTRASONOGRAPHY

When imaging joints, sound waves will travel fastest through bone and slower in joint fluid, making ultrasonography more useful for soft tissue structures of the stifle. Ultrasonography is useful for assessing cartilage abnormalities, meniscal tears, muscle, tendon and ligament abnormalities, arthropathies, and neoplasia. Diagnosis of CCL rupture can be made by demonstration of the fluttering edges of the ruptured ligament (Fig 3). If the infrapatellar fat pad obscures observation of the ruptured CCL, saline solution can be injected into the joint to create an anechoic window.

A ruptured patellar tendon appears swollen with irregular margins on ultrasound evaluation and is hyporeflective to hyperreflective. Any bone fragments > 3 mm will have acoustic shadowing. Thickening of the patellar tendon, as observed in dogs after tibial plateau leveling osteotomy (TPLO), appears as hypoechoic to anechoic centrally with disruption of the normal ligamentous pattern of the fibrils. Patellar luxation and fracture may also be identified with ultrasound. Other conditions of the stifle that can be assessed with ultrasound are OA, osteochondrosis, damaged menisci, collateral ligament damage, neoplasia, and long digital extensor tendon avulsions. OA changes appear as hyperreflective with irregular borders on the bone surface, whereas osteochondrosis is associated with cartilage defects. Free floating cartilage fragments appear hyperreflective.

The entire meniscus is difficult to observe. Normally the meniscus is inhomogeneous and congruent with the margins of the femoral and tibial condyles. Meniscal injury results in hyperreflective with hyporeflective areas that are irregular in shape and displaced. Collateral ligament damage appears hypoechoic to anechoic, and homogeneous to inhomogeneous. Tumors also appear inhomogeneous with irregular borders and are hypoechoic to hyperechoic. Avulsions of the long digital extensor tendon are observed as hyperreflective structures with acoustic shadowing.

There are substantial limitations to the routine use of ultrasound in evaluating the stifle joint. Small and medium...
breed dogs have a narrow stifle resulting in a limited window for image production. Ultrasound images generally have low resolution and soft tissue contrast which may make other imaging modalities such as MRI more useful.20

THERMOGRAPHY

Thermography is a noninvasive, diagnostic imaging technique that records cutaneous thermal patterns generated by the infrared emission of surface body heat. These patterns reflect thermal gradients on a color map in which the warmest regions are white or red, and the cooler regions are blue or black. Surface heat measured from the skin is directly related to the local dermal microcirculation, which is under direct control of the sympathetic autonomic nervous system. Conduction of heat from deeper portions of the body to the surface does not occur or create changes in the surface temperature. The clinical basis for thermography is the correlation of temperature recordings with various disease conditions or injury as they relate to autonomic function.25–28 Thermography can be used as a diagnostic screening tool, as an adjunctive test to enhance physical examination interpretation, to guide therapeutic management, and to assess long term response to treatment.25–27,29–32 Thermography in dogs has been limited to research applications but is being used clinically in our hospital.26,33–37

In an experimentally induced model of canine stifle arthritis, thermographic color maps changed as the temperature increased in the dermatome of the arthritic joints. Acupuncture was used for 4 weeks and the thermographic patterns and temperatures returned to normal whereas thermographic patterns remained abnormal in the untreated group.33 In studies involving the human knee, researchers consistently find that the patella has a cooler color and temperature whereas the surrounding surface has a warmer color and an increased temperature with synovitis and orthopedic disease.32,38–46 Similar changes have been observed in equine inflammatory joint disease.29,31 In experimentally induced calcaneal tendon tears in dogs, this same asymmetry and increase in color map and temperature over the injured region were noted.37

Thermography has proven beneficial in human and equine medicine. Compared with other imaging modalities it is noninvasive, does not require anesthesia, and does not expose the patient to radiation. Many studies have noted the ability of thermography to detect changes in the thermal pattern before clinical or radiographic signs were identified.28,30,31,41,47,48 In people, changes in thermographic patterns are associated with different diseases of the knee, making thermography a useful screening test.38–44,47–49 Development of image recognition software to facilitate computer analysis of thermographic images is being developed. Using image recognition analysis, cranial stifle images were 85% successful for differentiation of normal and CCL ligament deficient stifles in both clipped and

Figure 4 (A) Cranial thermal image of a normal canine stifle. The patella (white arrow) is a cooler color (dark blue) than the rest of the joint (which is warmer (light blue to green). (B) Thermal image of a stifle with a ruptured cranial cruciate ligament. The patella (black solid arrow) is cooler than the inflamed joint (black open arrow).
unclipped dogs (Fig 4). Medial, caudal, and lateral images were 75–85% successful for differentiation between groups whether stifles were clipped or not. Early accurate thermographic detection of stifle diseases may be possible as technology improves.

MRI

MRI detects emitted radiofrequency (RF) signals that are converted into a computerized gray-scale image or tomogram. In the 1970s, the concept of magnetic field gradients whereby an image based on magnetic resonance could be produced ushered in a new method of medical imaging.1,50 The major advantages of MRI are its excellent image resolution, superior soft tissue contrast, acquisition of images in any plane, and use of a magnetic field rather than ionizing radiation. Because protons in different tissues realign at different rates, the RF signal received by the RF coil can be filtered to accentuate different tissue characteristics using specific “sequences.” Additionally, contrast agents can be directly injected into a joint (MR arthrograms). With the introduction of region specific surface coils and stronger magnets, improved signal-to-noise ratio (SNR), enhanced spatial resolution and abbreviated scan times, MRI is now commonly used in people to assess internal derangements of the knee, wrist, hip, hand, and shoulder.50–54 OA is most commonly assessed using radiography in both people and animals.4,6,55–57 Several reports describe successful use of MRI for documentation and quantification of OA in dogs with naturally occurring and experimental models of CCL deficient stifles.7,58–62 MRI superior is superior to radiography for detection of early OA in a canine experimental model.63 When applying MRI to the musculoskeletal system, the imaging plane and pulse sequences are dependent on the structures being imaged. Because the stifle is a complex joint with various tissue types, differing image planes and sequences are typically used for complete evaluation (Fig 5).

Figure 5 (A) T1 turbo spin echo (TSE) sagittal magnetic resonance imaging (MRI) of a normal stifle joint. Cranial cruciate ligament (black arrow), caudal cruciate ligament (white arrow). (TR/TE = 2265/14, slice thickness = 1.5, 0 gap, FOV = 12, matrix = 284 × 240), Philips Achieva 3.0 T (Philips, Andover, MA). (B) Proton density TSE spectral attenuated inversion recovery sagittal MRI of a stifle joint with degenerative joint disease. The caudal cruciate ligament (black arrow) is evident within the joint. Stifle effusion is seen as a mixed hyperintensity within the joint. (TR/TE = 3368/30, slice thickness = 2, 0 gap, FOV = 14, matrix = 284 × 200), Philips Achieva 3.0 T.

Healthy articular cartilage has intermediate signal intensity on T1- and T2-weighted images, and high signal intensity on a fat suppressed turbospin echo sequence. Substances that consistently have high signal intensity on the T1-weighted images include fat and contrast. Synovial fluid and edema have high-signal intensity on T2-weighted sequences and low signal on T1-weighted sequences. The signal intensity from cortical bone, tendons, ligaments, and menisci is weak because they are not naturally hydrated tissues and therefore lack mobile protons.

CCL rupture is the most common cause of stifle OA in dogs and is frequently associated with damage to the medial meniscus.4,64–66 Complete evaluation of the menisci is impossible even with arthrotomy or arthroscopy because of anatomic constraints. Using either technique, the tibial surface of the menisci remains hidden from view, as does the integrity of internal meniscal structure.56–68 Additional meniscal surgery after surgical stabilization for CCL deficient stifle joints may be needed because of undiagnosed meniscal pathology at the time of the initial surgery.69 MRI evaluation of the internal architecture of the stifle joint affords many advantages over arthroscopy or arthroscopy and is the primary imaging modality when assessing for cruciate, meniscal, and articular pathology in people.50–52 Because dedicated surface coils for animals are not readily available, using an MR coil that closely approximates the size and configuration of the joint being imaged will improve the SNR and thus image quality.50–52 The advantages of using a low-field system must be weighed against the substantial decrease in resolution often essential to accurate image interpretation. Meniscal grading scales used in assessing people have not correlated well to findings in dogs imaged with low-field (0.3 T) MRI techniques; however, results were superior to those of...
arthrogram effect.” Intravenous contrast does not improve visualization of intraarticular structures on T2-weighted images when administered alone, but it is essential for an MR arthrography technique.59 If joint effusion is present, observation of its origin and insertion may afford clinicians an early opportunity to intervene medically before subsequent CCL rupture.83,84 Using a combination of T1-weighted, T2-weighted and STIR sequences is useful when considering the variety of cortical and bone marrow alterations to be identified. There is a paucity of information in the veterinary literature about use of MRI versus CT scan and conventional radiography for identification and determination of the extent of neoplastic disease for prognostic and surgical planning purposes. In a comparison of the accuracy of the 3 modalities in 10 amputated limbs, measurements made by each were fairly accurate in predicting tumor length. It was considered by the authors, however, to be advantageous to use additional imaging studies to confirm the extent of neoplastic disease because some evidence of underestimation (radiography and CT) and overestimation (MRI) was observed (Fig 8).85 The trend toward increased magnet strength (≥3.0 T) to improve SNR has continued in human medicine despite

In dogs, abnormal signal intensity with thickening of the CCL found with stifle MRI is associated with partial CCL rupture whereas an inability to image the CCL with its origin and insertion is found with complete CCL rupture. The aforementioned MRI findings are more readily observed using an MR arthrography technique.59

In dogs, abnormal signal intensity with thickening of the CCL found with stifle MRI is associated with partial CCL rupture whereas an inability to image the CCL with its origin and insertion is found with complete CCL rupture. The aforementioned MRI findings are more readily observed using an MR arthrography technique.59

The evaluation of meniscal integrity is also enhanced using a combination of sagittal and dorsal images and MR arthrography.59 If joint effusion is present, observation of intraarticular structures is improved on T2-weighted images without administering intraarticular contrast, known as the “arthrogram effect” (Fig 6). Intravenous contrast does not permit contrast enhancement sufficient in the imaging time frame allotted, when compared with intraarticular administration. Additionally, no negative effects associated with intraarticular contrast use have been reported in dogs and only rare reactions occur in people.72,73 For MR arthrography in dogs with CCL deficient stifles, T1-weighted conventional spin echo images and T2-weighted fat-suppressed fast spin echo images are recommended to maximize contrast between the gadolinium in the joint and the menisci and capsular ligaments.59 Sequence details are often magnet size and coil specific, therefore the results of specific protocols may vary between imaging centers.

Subchondral cyst-like lesions, bone bruises, geodes, and high-signal intensity short-tau inversion recovery (STIR) lesions are terms used to describe ill defined signal intensities seen as abnormalities on articular MRI scans.74–77 Signal alterations seen in the subchondral bone marrow of the distal aspect of the femur and proximal aspect of the tibia are common findings in people with traumatic cruciate ligament injuries and OA and are referred to as a “bone bruises.”78,79 There is evidence that an MRI finding of a bone bruise can be induced with an experimental trauma in dogs.80,81 These injuries are associated with marked histologic and biochemical changes despite grossly normal articular cartilage, thus providing support to the theory that progressive degenerative joint disease may contribute to ligamentous deterioration and precede actual ligament rupture in clinical cases of CCL rupture in dogs. In both clinical cases and in experimental models of CCL rupture in dogs, the location of the MRI lesions is typically the intercondylar fossa of the femur and in the intercondylar eminence of the tibia (Fig 7). This is thought to be in part related to abnormal stresses born by the remaining caudal cruciate ligament and subsequent sequela in the cancellous bone subchondral region associated with its origin and insertion.70,71 Early detection of theoretical pre-CCL rupture lesions by stifle MRI evaluation may afford clinicians an early opportunity to intervene medically before subsequent CCL rupture.

Bone neoplastic processes have been assessed in people including those of the appendicular skeletal system for purpose of limb sparing procedures.83,84 Using a combination of T1-weighted, T2-weighted and STIR sequences is useful when considering the variety of cortical and bone marrow alterations to be identified. There is a paucity of information in the veterinary literature about use of MRI versus CT scan and conventional radiography for identification and determination of the extent of neoplastic disease for prognostic and surgical planning purposes. In a comparison of the accuracy of the 3 modalities in 10 amputated limbs, measurements made by each were fairly accurate in predicting tumor length. It was considered by the authors, however, to be advantageous to use additional imaging studies to confirm the extent of neoplastic disease because some evidence of underestimation (radiography and CT) and overestimation (MRI) was observed (Fig 8).85 The trend toward increased magnet strength (≥3.0 T) to improve SNR has continued in human medicine despite

Figure 6 (A) Proton density sagittal magnetic resonance imaging (MRI) of a stifle showing a cranial lateral meniscal tear (black arrow). (TR/TE = 1699/14, slice thickness = 2.0 mm, FOV = 13, matrix = 264 × 240), Philips Achieva 3.0 T. (B) A T2 turbo spin echo sagittal oblique MRI of a stifle with a cranial cruciate ligament (CCL) rupture (black arrow). There is mixed hyperintensity of the caudal cruciate ligament indicating thickening (open black arrow). (TR/TE 300/100, slice thickness = 1.2, 0.1 mm gap, FOV = 11, matrix = 248 × 192), Philips Achieva 3.0 T. (C) MR arthrogram showing CCL rupture (black arrow) using a T1 FATSAT sagittal sequence. (TR/TE = 596/20, slice thickness = 1.7, 0.2 mm gap, FOV = 11, matrix = 332 × 234), Philips Achieva 3.0 T.

increased purchase, cryogen and maintenance costs, because of the superior resolution and shorter scan times. Because the anatomic structures being imaged are dogs and cats than found in people, the benefits of improved resolution become indispensable.

CT

CT is based on tomography technology developed in the early 1900s which allowed for an image of a single slice of the body to be produced on radiographic film. Images can be manipulated, with a computerized process known as windowing, to reveal various structures based on tissue characteristics. With recent advances, modern scanners allow this data to be reformatted as volumetric (3D) representations of structures. From this, a 3D model can be constructed and displayed. Multiple models can be constructed from various thresholds, allowing different colors to represent each anatomic component (bone, muscle, cartilage; Fig 9). Clinical advantages of using multidetector helical CT scanners include improved patient safety, enhanced accuracy and most strikingly, the ability to perform 3D image reconstructions with the option of creating surgical models to plan surgery for complex cases. We are unaware of reports of the use of CT for assessment of canine degenerative joint disease; however, a scale characterizing the severity of degenerative joint disease was included as part of a recent report on the use of CT arthrography (CTA) in assessing canine stifles.

Despite the common finding of osteochondritis dissecans (OCD) in dogs there is only 1 report of the use of CT for diagnosis of OCD. CT evaluation of the intercondylar notch of canine stifles can be easily obtained and

Figure 7 (A) T1 turbo spin echo dorsal magnetic resonance imaging (MRI) of a femoral intercondylar notch bone bruise (black arrow). (TR/TE = 581/20, slice thickness = 1.7, 0.5 gap, FOV = 12, matrix = 308 × 252). (B) Short-tau inversion recovery dorsal MRI of a femoral intercondylar notch bone bruise (black arrow). Caudal cruciate ligament (TR/TE = 3967/30, T1 = 190, slice thickness = 2, 0.2 gap, FOV = 12, matrix = 292 × 216). Philips Achieva 3.0 T.

Figure 8 Magnetic resonance series of a distal femoral osteosarcoma. (A) T1-weighted proton density (PD) sagittal magnetic resonance imaging (MRI). The tumor is seen as a mixed hypointensity of the distal medullary canal. (TR/TE = 1974/14, slice thickness = 1.5, 0 gap, FOV = 12, matrix = 284 × 240). Philips Achieva 3.0 T. (B) PD spectral attenuated inversion recovery sagittal MRI. The medullary canal is a mixed hyperintensity (TR/TE = 5918/30, slice thickness = 1.5, 0 gap, FOV = 12, matrix = 268 × 210), Philips Achieva 3.0 T. (C) Inverted short-tau inversion recovery sagittal MRI showing the extent of the tumor. (D) T1 fast field echo contrast-enhanced MR arthrography of the stifle highlighting the increased blood supply to the osteosarcoma.
more reliable when compared with conventional radiographs. Additionally, the superior image quality is attributed to the avoidance of osseous or soft tissue superimposition. The modality of choice for imaging the human knee is MRI; however, CTA has been reported to have similar sensitivity and specificity to MRI for detection of meniscal injury. Successful identification of intraarticular structures has been reported with CTA in normal and cadaveric canine stifles. Care during administration of intraarticular contrast to avoid the fat pad and a concentration of 150 mg iodine/mL is recommended to enhance visualization without contrast obscuring structures because of excessive bloom. Removal of a small amount of joint fluid, especially in dogs with severe joint effusion, and flexing and extending the joint gently has been recommended to enhance contrast dispersion.

In a recent report of CTA to assess intraarticular structures in dogs with naturally occurring stifle ligamentous dysfunction, sensitivities and specificities were 96–100% and 75–100% respectively for the identification of CCL rupture. In the same report; however, reviewers were less adept at discriminating torn meniscal fibrocartilage, with sensitivities of 13.3–73.3% and specificities of 57.1–100%. Because use of CTA in assessing canine stifles (Fig 10) remains in its infancy, reviewers were all “inexperienced” in assessing stifle pathology using this modality which undoubtedly contributed to the differences reported compared with the human literature.

A pilot study of pre- and postoperative evaluations of dogs with medial patellar luxations using CT technology did find CT useful in documenting the effects of surgery (medial releasing desmotomy, lateral imbrication, modification of the femoral trochlear groove and tibial crest transposition) on the stifle. In that study, restoration of the quadriceps apparatus and adequate deepening of the femoral trochlear groove were successfully achieved. Additionally noted was caudalization of the patellar tendon and lateralization of the tibial tuberosity, the clinical significance of which remains undetermined.

There are several reports describing use of CT for detection of neoplastic disease in animals for prognostic and surgical planning purposes. The assessment of CT in 10 amputated limbs, revealed CT was fairly accurate in predicting tumor length (Fig 11); however, it was considered to be advantageous to use additional imaging studies to confirm the extent of neoplastic disease because some evidence of underestimation was observed. Although CT scanners have been used frequently in human medicine to assess intraarticular structures and have the benefit of providing better osseous visualization and shorter scan times when compared with MRI most stifle imaging studies in veterinary medicine are centered on the assessment of intraarticular ligamentous abnormalities making MRI a more suitable modality.

The canine stifle represents a diagnostic challenge because of its complex composition. MRI has recently been defined as the “gold standard” in human medicine because of the flexibility it affords the clinician when faced with imaging several different tissue types in a single structure. Thermal imaging offers the advantage of objectively

![Figure 9](image1) Three-dimensional stifle computed tomographic scan with reconstruction by tissue layer; (A) skin, (B) muscle, (C) vascular, (D) bone.

![Figure 10](image2) Sagittal (A) and dorsal (B) computed tomographic arthrography (CTA) images of a normal canine stifle, cranial cruciate ligament (CCL), caudal cruciate ligament (black arrow) and sagittal (C), and dorsal (D) CTA images of a CCL-deficient stifle; only the caudal cruciate ligament is visible.
viewing physiologic changes within the anatomic region of interest before the onset of structural change. Regardless of the imaging modality, progress in computing technology has accelerated advances in diagnostic imaging. The key to successful management of the diagnostic options available is to have a thorough understanding of the anatomy and tissue properties of region being imaged and to recognize the strengths and weaknesses of the modality being selected. Ultimately, a multimodality approach will likely provide a complete assessment of complex structures using the strengths of each modality to exploit the tissue characteristics of the structure being imaged.

REFERENCES

