
J.W. Munyon, W.A. Retzlaff and R. B. Brugam.

Biological Sciences Southern Illinois University Edwardsville

Introduction

The most abundant isotopes of nitrogen and carbon are ^{14}N and ^{12}C, but two other stable isotopes of these elements also exist, ^{15}N and ^{13}C. The abundances of these isotopes in organic matter are low, but measurable. Ratios of ^{15}N and ^{13}C to ^{14}N and ^{12}C are presented as per mil differences from a reference material (δ‰).

Values of $\delta^{15}\text{N}$ and $\delta^{13}\text{C}$ vary as a result of biological processes. ^{15}N has been used in recent years to reconstruct the food chains of lakes. ^{15}N is favored in amino acid formation. Chemical bonds containing ^{15}N are stable and harder to break allowing it to be conserved in tissue and concentrated up the food chain. Studies have shown that $\delta^{15}\text{N}$ concentrates up the food chain at ~3.4‰ at each trophic level (Cabana 2006; Post 2002).

Carbon-saturated photosynthesis discriminates against ^{13}C, but under conditions of carbon limitation this discrimination breaks down and ^{13}C is used by plants. Thus, in shallow water macrophytes where photosynthetic rates are high, one might expect organic matter to have high $\delta^{13}\text{C}$ values. Thus, the heavier isotope of carbon, ^{15}N, concentrates up the food chain at ~3.4‰ at each trophic level.

Materials and Methods

All samples were collected over 12 months from Feb 2005 to Feb 2006. Fish samples were collected using minnow traps and angling. The fish were euthanized with Tricaine (a fish anesthetic) at a lethal dose. The fish were returned to lab where they were weighed and measured, tissue samples were taken, and gut contents were analyzed. Benthic invertebrates, zooplankton, and phytoplankton samples were collected approximately every two weeks. Benthic invertebrates were collected using an Ekman dredge and sieved in situ. Samples were sorted in lab and dried. Phytoplankton were collected by filtering one liter of water through a GF/C glass fiber filter designed to filter cells from water. Zooplankton were collected with a zooplankton net and filtered through a glass fiber filter in lab. All samples were dried for 24-48 hours in a 60°C drying oven. Dried samples were ground using a cryogenic impact grinder. Samples were sent to Cornell Isotope Labs and analyzed for $\delta^{15}\text{N}$ and $\delta^{13}\text{C}$ using an Isotope Ratio Mass Spectrometer.

Results

Plants:
Both phytoplankton and Myriophyllum have similar $\delta^{15}\text{N}$ values (Fig. 3), but Myriophyllum has considerably higher average $\delta^{13}\text{C}$ (+16.5±3.0‰ for Myriophyllum versus -29.3±3.1‰ for phytoplankton).

Zooplankton:
Zooplankton have a slightly higher $\delta^{15}\text{N}$ value (+14.8±2.2‰) than phytoplankton (+11.2±2.9‰). The $\delta^{13}\text{C}$ values for zooplankton are similar to phytoplankton – not Myriophyllum (Fig.4).