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Abstract 
This assignment, velocity dependent forces and terminal velocities, we learned how to model a 
ball falling in one dimension with both linear and quadratic drag. We used the Runge-Kutta 
routine provided for us to solve the differential equations that describe this motion. Using this 
program, I found that the terminal velocity of a particle with a radius of 0.1 µm was 1.186 mm/s. 
I also found that the terminal velocity of a particle with a radius of 0.1 m was 204.4 m/s.  
 
Introduction 
This assignment was designed to coincide with the class discussion on both linear and quadratic 
drag and solving differential equations. The Runge-Kutta routine can solve differential equations 
in the form of  
 
 (1) 
 
 
where s is the independent variable and the Qn are the dependent variables. Since in this 
assignment, we are dealing with strictly one dimensional motion, our first two coupled 
differential equations of motion are 
 
 
 (2) 
 
In terms of Qn and s, we chose Q1  =  x, Q2 = v, and s = t, thus producing, 
 
 
 (3) 
 
We will investigate the effects of the size of a sphere on its terminal velocity. We assume that we 
are dropping spherical ball with a density (ρ) of 8960 kg/m3 of varying radii, r, out of a ballon of 
height h. Therefore, the force of gravity on the sphere is given by 
 
 
 (4) 
 
and the drag force is given by 
 
 (5) 
 
where C1 = 3.1×10-4·r and C2 = 0.88·r2. Therefore, the equations of motion are 
 
 (6) 
 
and 
 
 
  (7) 
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Table 1. Radius of sphere and its terminal velocity 

where 
 
 (8) 
 
 
In class, we found that the quadratic drag dominated when the radius was reasonable large, like 
larger than a bb. Therefore, by ignoring the linear drag term and balancing the force of gravity 
with the quadratic drag term, we find that the terminal velocity is given by 
 
 (9) 
 
where we substituted in ρ =8960 kg/m3 and g = 9.8 m/s2. If on the other hand, the particles are 
extremely small, like dust particles or smaller, the linear drag term dominates. Therefore, by 
balancing the linear drag term, we find that the terminal velocity is given by 
 
 (10) 
 
Results and Discussion 
 
Table 1 shows the data for the particle’s terminal velocity based upon its radius. I took the 
absolute value for the velocity for all the values, because it is impossible to take the logarithm of 
negative number. 
 

Radius (m) Terminal Velocity (m/s) 
1.00E-07 1.1864E-05 
3.00E-07 1.0677E-04 
1.00E-06 1.1864E-03 
3.00E-06 1.0676E-02 
1.00E-05 1.1824E-01 
3.00E-05 9.8509E-01 
1.00E-03 4.9390E+00 
3.00E-04 1.0625E+01 
1.00E-03 2.0268E+01 
3.00E-03 3.5350E+01 
1.00E-02 6.4629E+01 
3.00E-02 1.1197E+02 
1.00E-01 2.0443E+02 

 
 
 
 
 
Figure 1 shows the graph of the velocity versus time for the sphere of varying radii with both 
axes being on a logarithmic scale. Notice how that as radius increases, the terminal velocity 
increases. 
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Fig. 1. Velocity vs. Time for varying radii 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2 depicts the terminal velocity versus the radius for radii less than 30 µm. Notice how the 
curve fit for the data is  vt = 1×109·r1.99 m/s. This is very close to the calculated value of vt = 
1.19×109·r2 m/s. 
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Fig. 2. Terminal velocity vs. radius for relatively small radii 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
On the other hand, when one studies the radii greater than 30 µm, one finds similar results. The 
curve fit for this graph is vt = 649.97·r0.5, which is very close to the calculated value of is vt = 
646·r0.5. Fiure 3 show the graph of this situation. 
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Fig. 3. Terminal velocity vs. radius for relatively large radii 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4 shows the graph of the terminal velocity versus the radius of the sphere. The curve fit 
for this graph does not match the data as well as the other fits did, especially for the smaller radii. 
I believe that this is due to the fact that the quadratic drag term is very small. Figure 5 shows the 
graph of the terminal velocity function. Notice how they are appear to be similar. 
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Fig. 6. Graph of the terminal velocity function 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 5. Terminal velocity vs. varying radii 
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Conclusion 
This assignment taught me how to use differential equations to solve the free fall in one 
dimension. I found that the terminal velocity increased as the radius of the sphere increased. I 
also found that for a relatively small radius, one could ignore quadratic drag. In addition, I found 
that for a relatively large radius, one could ignore linear drag. 
 
 


