Matthew S. Norton
PHY 112 Lab Report CL-4
Damped Oscillator: Feynman-Newton Method for
Solving First-Order Differential Equations
March 2, 2006

Norton 1

Abstract

In this lab, I used the Feynman-Newton method for solving first-order differential equations to
simulate the motion of a damped oscillator. I did this lab to increase my knowledge of
FORTRAN programming, to gain a better understanding of the motion of a damped oscillator,
and to study another method for solving first-order differential equations, the Feynman-Newton
method. I studied the results from the Feynman-Newton methods for a Ar = 0.25s and A¢ = 1.0s
and then integrate from ¢ = 0 to ¢ = 25 with an initial displacement of 1m and an initial velocity
of 0 m/s.

Introduction

This lab was designed to relate to the class discussion of harmonic motion, especially in regard
to the motion of a damped oscillator. The oscillator modeled in this experiment was a spring with
a mass attached to one end. This is demonstrated in figure 1.

Equilibrium

Wall

Table

Fig. 1. An example setup for a spring as a damped oscillator

In this lab, we started with the equation for the drag force, Fump, Which is directed in the
opposite direction of the direction of motion.

Fdamp =C"V, (1)

where c is the damping coefficient and v is the velocity of the oscillating mass. Since Fiamy 1S @
force, it can be written in the form of Newton’s second law with a mass, m, acted upon by a
linear restoring force with a spring constant, k, which is.

F(t)=m-a(t)=m- =3 = k- x(t)=cv(2), @

and is a second-order differential equation. Equation 2 can be rewritten as two first-order
differential equation,

dv _ F(1)

d om 3)

Norton 2

and

). “

One could try and use the Euler method to solve these first-order differential equations, but the
results are erroneous at best. Therefore, a better way of solving first-order differential equations
was needed, the Feynman-Newton method, or half step method. Using the Feynman-Newton
method, the solution to a first-order differential equation,

T _ g, ®

is obtained by using the value of the function g(z) halfway between ¢ and ¢ + At. This is shown in
the following equation,

f(t+At)zf(t)+At-q(t+%), ©)

which is the algorithm for the Feynman-Newton method.

IMPLICIT NONE

! Declare variables

1 INTEGER :: I, Icnt

2 Double Precision X, V, A, dt, Xold, Vold, Xint, Vint, C1,
C2, Time, TimeX, TimeV, K, C, M

3 OPEN (30, FILE = "F-N.txt") ! Open the output file for
Feynman-Newton method

4 OPEN (40, FILE = "Euler.txt") ! Open the output file for
Euler method

5 Dt = .25

6 Time = 0

7 WRITE (30, '(A5, T15, Al, T30, A5, T45, Al, T60, Al, T75)')
"Timex", "X", "Timev", "V", "A"

8 WRITE (40, '(A5, T15, Al, T30, A5, T45, Al, T60, Al, T75)')
"Timex", "X", "Timev", "V", "A"

9 PRINT *, "Please input the mass, m"

10 READ *, M

11 PRINT *, "Please input the spring constant, k"

12 READ *, K

13 PRINT *, "Please input the damping coefficient, c
14 READ *, C

15 PRINT *, "Please input the initial position"

16 READ *, Xint

17 PRINT *, "Please input the initial velocity"

18 READ *, Vint

Norton 3

19
20
21
22
23

24
25
26
27
28
29
30
31
32
33

34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56

Cl=K/M
c2=C/ M
A = —-(Cl * Xint + C2 * Vint)

Xold = Xint
Vold = vint + Dt * A / 2.

DO I =1, 100

X = Xold + dt * Vold

A= -(Cl * X + C2 * Vold)

Vv Vold + Dt * A

TimeX = TimeX + Dt

Timev = TimeX + Dt / 2.

WRITE (30, 1000) TimeX, X, TimeV, V, A

Xold = X
Vold =V
END DO

Reset variables
A = —-(Cl * Xint + C2 * Vint)
Xold = Xint
Vold = Vvint
Icnt = 0
X =0
V=20
A =0
TimeX = 0
TimeV = 0

DO I =1, 100

X = Xold + dt * Vold

Vv Vold + Dt * A

A= —(Cl * X + C2 * V)

TimeX = TimeX + Dt

Timev = TimeX + Dt / 2.

WRITE (40, 1000) TimeX, X, TimeV, V, A

Xold = X

Vold =V

END DO

1000 FORMAT (5(E12.5, 3X))
CLOSE (30) ! Close the output file
CLOSE (40) ! Close the output file

PRINT *, "Output files, F-N.txt and Euler.txt have been

closed, program is complete!"

57
58

PRINT *, "Have a great day!"
END PROGRAM

Fig. 2. Source code for a FORTRAN program for the motion of a damped oscillator

Norton 4

Figure 2 shows the source code for the program that I used to solve the first-order differential
equations. In lines 1 and 2 of the program, I declare my variables. Then in lines 3 and 4 I open
the output files. In lines 5 and 6, I initialize the change in time and the time. In lines 8 and 9, 1
write to the first line of the output files the column labels to be read into KaleidaGraph. Then in
lines 9 through 18, I prompt the user for the mass on the end of the spring, the spring constant,
the damping coefficient, the initial position, and the initial velocity. In lines 19 through 23, I
initialize the initial conditions for the spring. In lines 24 through 33, I perform a DO loop that
calculates the first-order differential equations using the Feynman-Newton method. In lines 34
through 42, I reinitialize the conditions to their initial state. Then in lines 43 through 52, I
perform a DO loop that calculates the first-order differential equations using the Euler method.
In line 53, I have the format statement for writing the data calculated the DO loops to their
respective files. In lines 54 and 55, I close the output files. Then in lines 56 through 58, I tank the
user for using the program and I end the program.

Results and Discussion

Figure 3 shows the position versus time for the Euler method for a A¢ of 0.25s and 1.0s. For this
figure, both values for At appear to produce similar results until time reaches about 13 seconds.
Then the values for Az = 1.0s just appears to “blow up” and seemingly gain energy, which defies
the second law of thermodynamics. While the graph of A7 = 0.25s also seems to gain energy, it
not as drastic at the graph of A7 = 1.0s. The graph of A¢ = 0.25s appears to be more accurate that
the graph of Az = 1.0s. The graph of A7 = 0.25s is more accurate because it provides more data
points and the time interval between the data points is lessened.

Figure 4 shows the position versus time for Az = 0.25s and A¢ = 1.0s, this is the same graph as in
figure 3, but it is zoomed in to show the movement of the A7 = 0.25s curve. This graph shows
how the Euler method, even for a relatively small time step, produces results that cannot be
trusted. While, it is better than the results for Az = 1.0s, Az = 0.25s does not produce good results.

Position (in meters)

-1000

—— X fordT =1
X fordT =0.25

Euler method for dt =.25 and dt = 1
2000

1500 /

1000

500

N\
-500 N

0 5 10 15 20 25

Time (in sec)

30

Norton 5

Fig. 3. Position vs. Time for a Af of 0.25s and a At 1.0s for the
Euler method

Norton 6

X fordT =1
——— X for dT = 0.25

Euler method for dt =.25 and dt = 1

40

20
%
g
£ o
£ 0 | 20 55& f
5 e Sl
.“ﬁ
[o]
o

20

-40 v

0 5 10 15 20 25 30

Time (in sec)

Fig. 4. Position vs. time for A¢ = 0.25s and 1.0s for Euler Method,
zoomed in to show Ar = 0.25s

At this point in the experiment, [switched from the Euler method to the Feynman-Newton
method for solving first-order differential equations.

Figure 5 depicts the position versus time for A¢ = 0.25s and 1.0s for the Feynman-Newton
method. The different values for A¢ produce similar results until time reached about 13 seconds.
At that point, the graph of A7 = 1.0s gets out phase with the graph of A7 = 0.25s. The graph of At
= (0.25s appears to be more accurate than the graph of A7 = 1.0s. This is because the graph of Az =
0.25s contains more data points than the graph of Az = 1.0s and the graph of Az = 0.25s appears to
be smoother than the graph of A7 = 1.0s. Because there was only 25 data points for the graph of
At = 1.0s, it appears to be more jagged and rough. Therefore, the graph of Ar = 0.25s should be
more accurate than the graph of A7 = 1.0s.

Figure 6 shows the plot of velocity versus acceleration.

— — XfordT =025 I

XfordT =1 Norton 7
Feynman-Newton Method for dt = 0.25 and dt = 1
1
0.5 .‘ /m
| /A
£ 0 \
:
-0.5
-1
0 5 10 15 20 25 30

Time (in sec)

Fig. 5. Position vs. time for A = 0.25s and 1.0s for Feynman-Newton method

Norton 8

