Matthew S. Norton
PHY 112 Lab Report CL-4
Damped Oscillator: Feynman-Newton Method for
Solving First-Order Differential Equations
March 2, 2006

Abstract

In this lab, I used the Feynman-Newton method for solving first-order differential equations to simulate the motion of a damped oscillator. I did this lab to increase my knowledge of FORTRAN programming, to gain a better understanding of the motion of a damped oscillator, and to study another method for solving first-order differential equations, the Feynman-Newton method. I studied the results from the Feynman-Newton methods for a $\Delta t=0.25 \mathrm{~s}$ and $\Delta t=1.0 \mathrm{~s}$ and then integrate from $t=0$ to $t=25$ with an initial displacement of 1 m and an initial velocity of $0 \mathrm{~m} / \mathrm{s}$.

Introduction

This lab was designed to relate to the class discussion of harmonic motion, especially in regard to the motion of a damped oscillator. The oscillator modeled in this experiment was a spring with a mass attached to one end. This is demonstrated in figure 1.

Fig. 1. An example setup for a spring as a damped oscillator

In this lab, we started with the equation for the drag force, $F_{\text {damp }}$, which is directed in the opposite direction of the direction of motion.

$$
\begin{equation*}
F_{\text {damp }}=c \cdot v \tag{1}
\end{equation*}
$$

where c is the damping coefficient and v is the velocity of the oscillating mass. Since $F_{\text {damp }}$ is a force, it can be written in the form of Newton's second law with a mass, m, acted upon by a linear restoring force with a spring constant, k, which is.

$$
\begin{equation*}
F(t)=m \cdot a(t)=m \cdot \frac{d^{2} x}{d t^{2}}=-k \cdot x(t)-c \cdot v(t) \tag{2}
\end{equation*}
$$

and is a second-order differential equation. Equation 2 can be rewritten as two first-order differential equation,

$$
\begin{equation*}
\frac{d v}{d t}=\frac{F(t)}{m} \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{d x}{d t}=v(t) . \tag{4}
\end{equation*}
$$

One could try and use the Euler method to solve these first-order differential equations, but the results are erroneous at best. Therefore, a better way of solving first-order differential equations was needed, the Feynman-Newton method, or half step method. Using the Feynman-Newton method, the solution to a first-order differential equation,

$$
\begin{equation*}
\frac{d f(t)}{d t}=q(t) \tag{5}
\end{equation*}
$$

is obtained by using the value of the function $q(t)$ halfway between t and $t+\Delta t$. This is shown in the following equation,

$$
\begin{equation*}
f(t+\Delta t) \approx f(t)+\Delta t \cdot q\left(t+\frac{\Delta t}{2}\right) \tag{6}
\end{equation*}
$$

which is the algorithm for the Feynman-Newton method.

```
IMPLICIT NONE
Declare variables
1 INTEGER : : I, Icnt
2 Double Precision X, V, A, dt, Xold, Vold, Xint, Vint, C1,
C2, Time, TimeX, TimeV, K, C, M
3 OPEN (30, FILE = "F-N.txt") ! Open the output file for
Feynman-Newton method
4 OPEN (40, FILE = "Euler.txt") ! Open the output file for
Euler method
D Dt = . }2
6 Time = 0
7 WRITE (30, '(A5, T15, A1, T30, A5, T45, A1, T60, A1, T75)')
"TimeX", "X", "TimeV", "V", "A"
8 WRITE (40, '(A5, T15, A1, T30, A5, T45, A1, T60, A1, T75)')
"TimeX", "X", "TimeV", "V", "A"
9 PRINT *, "Please input the mass, m"
10 READ *, M
11 PRINT *, "Please input the spring constant, k"
12 READ *, K
13 PRINT *, "Please input the damping coefficient, c"
14 READ *, C
15 PRINT *, "Please input the initial position"
16 READ *, Xint
17 PRINT *, "Please input the initial velocity"
18 READ *, Vint
```

```
19 C1 = K / M
20 C2 = C / M
21 A = -(C1 * Xint + C2 * Vint)
22 Xold = Xint
23 Vold = Vint + Dt * A / 2.
24 DO I = 1, 100
25 X = Xold + dt * Vold
26 A = -(C1 * X + C2 * Vold)
27 V = Vold + Dt * A
28 TimeX = TimeX + Dt
29 Timev = TimeX + Dt / 2.
30 WRITE (30, 1000) TimeX, X, TimeV, V, A
31 Xold = X
32 Vold = V
33 END DO
! Reset variables
34 A = -(C1 * Xint + C2 * Vint)
35 Xold = Xint
36 Vold = Vint
37 Icnt = 0
38 X = 0
39 V = 0
40 A = 0
41 TimeX = 0
42 TimeV = 0
43 DO I = 1, 100
44 X = Xold + dt * Vold
45 V = Vold + Dt * A
46 A = -(C1 * X + C2 * V)
47 TimeX = TimeX + Dt
48 Timev = TimeX + Dt / 2.
49 WRITE (40, 1000) TimeX, X, TimeV, V, A
50 Xold = X
51 Vold = V
52 END DO
53 1000 FORMAT (5(E12.5, 3X))
54 CLOSE (30) ! Close the output file
55 CLOSE (40) ! Close the output file
56 PRINT *, "Output files, F-N.txt and Euler.txt have been
closed, program is complete!"
57 PRINT *, "Have a great day!"
58 END PROGRAM
```

Fig. 2. Source code for a FORTRAN program for the motion of a damped oscillator

Figure 2 shows the source code for the program that I used to solve the first-order differential equations. In lines 1 and 2 of the program, I declare my variables. Then in lines 3 and 4 I open the output files. In lines 5 and 6 , I initialize the change in time and the time. In lines 8 and 9, I write to the first line of the output files the column labels to be read into KaleidaGraph. Then in lines 9 through 18, I prompt the user for the mass on the end of the spring, the spring constant, the damping coefficient, the initial position, and the initial velocity. In lines 19 through 23, I initialize the initial conditions for the spring. In lines 24 through 33, I perform a DO loop that calculates the first-order differential equations using the Feynman-Newton method. In lines 34 through 42, I reinitialize the conditions to their initial state. Then in lines 43 through 52, I perform a DO loop that calculates the first-order differential equations using the Euler method. In line 53, I have the format statement for writing the data calculated the DO loops to their respective files. In lines 54 and 55, I close the output files. Then in lines 56 through 58, I tank the user for using the program and I end the program.

Results and Discussion

Figure 3 shows the position versus time for the Euler method for a Δt of 0.25 s and 1.0 s . For this figure, both values for Δt appear to produce similar results until time reaches about 13 seconds. Then the values for $\Delta t=1.0$ s just appears to "blow up" and seemingly gain energy, which defies the second law of thermodynamics. While the graph of $\Delta t=0.25 \mathrm{~s}$ also seems to gain energy, it not as drastic at the graph of $\Delta t=1.0 \mathrm{~s}$. The graph of $\Delta t=0.25 \mathrm{~s}$ appears to be more accurate that the graph of $\Delta t=1.0 \mathrm{~s}$. The graph of $\Delta t=0.25 \mathrm{~s}$ is more accurate because it provides more data points and the time interval between the data points is lessened.

Figure 4 shows the position versus time for $\Delta t=0.25 \mathrm{~s}$ and $\Delta t=1.0 \mathrm{~s}$, this is the same graph as in figure 3, but it is zoomed in to show the movement of the $\Delta t=0.25 \mathrm{~s}$ curve. This graph shows how the Euler method, even for a relatively small time step, produces results that cannot be trusted. While, it is better than the results for $\Delta t=1.0 \mathrm{~s}, \Delta t=0.25 \mathrm{~s}$ does not produce good results.

Euler method for $\mathbf{d t}=.25$ and $d t=1$

Fig. 3. Position vs. Time for a Δt of 0.25 s and a $\Delta t 1.0 \mathrm{~s}$ for the Euler method

Fig. 4. Position vs. time for $\Delta t=0.25 \mathrm{~s}$ and 1.0 s for Euler Method, zoomed in to show $\Delta t=0.25 \mathrm{~s}$

At this point in the experiment, I switched from the Euler method to the Feynman-Newton method for solving first-order differential equations.

Figure 5 depicts the position versus time for $\Delta t=0.25 \mathrm{~s}$ and 1.0 s for the Feynman-Newton method. The different values for Δt produce similar results until time reached about 13 seconds. At that point, the graph of $\Delta t=1.0 \mathrm{~s}$ gets out phase with the graph of $\Delta t=0.25 \mathrm{~s}$. The graph of Δt $=0.25 \mathrm{~s}$ appears to be more accurate than the graph of $\Delta t=1.0 \mathrm{~s}$. This is because the graph of $\Delta t=$ 0.25 s contains more data points than the graph of $\Delta t=1.0 \mathrm{~s}$ and the graph of $\Delta t=0.25 \mathrm{~s}$ appears to be smoother than the graph of $\Delta t=1.0 \mathrm{~s}$. Because there was only 25 data points for the graph of $\Delta t=1.0 \mathrm{~s}$, it appears to be more jagged and rough. Therefore, the graph of $\Delta t=0.25 \mathrm{~s}$ should be more accurate than the graph of $\Delta t=1.0 \mathrm{~s}$.

Figure 6 shows the plot of velocity versus acceleration.

Feynman-Newton Method for $\mathrm{dt}=0.25$ and $\mathrm{dt}=1$

Fig. 5. Position vs. time for $\Delta t=0.25 \mathrm{~s}$ and 1.0 s for Feynman-Newton method

