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Fig. 1. An example setup for a spring as a damped oscillator 
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Abstract 
In this lab, I used the Feynman-Newton method for solving first-order differential equations to 
simulate the motion of a damped oscillator. I did this lab to increase my knowledge of 
FORTRAN programming, to gain a better understanding of the motion of a damped oscillator, 
and to study another method for solving first-order differential equations, the Feynman-Newton 
method. I studied the results from the Feynman-Newton methods for a Δt = 0.25s and Δt = 1.0s 
and then integrate from t = 0 to t = 25 with an initial displacement of 1m and an initial velocity 
of 0 m/s. 
 
Introduction 
This lab was designed to relate to the class discussion of harmonic motion, especially in regard 
to the motion of a damped oscillator. The oscillator modeled in this experiment was a spring with 
a mass attached to one end. This is demonstrated in figure 1. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
In this lab, we started with the equation for the drag force, Fdamp, which is directed in the 
opposite direction of the direction of motion. 
 
   (1) 
 
where c is the damping coefficient and v is the velocity of the oscillating mass. Since Fdamp is a 
force, it can be written in the form of Newton’s second law with a mass, m, acted upon by a 
linear restoring force with a spring constant, k, which is. 
 
  (2) 
  
 
and is a second-order differential equation. Equation 2 can be rewritten as two first-order 
differential equation,  
 
 
  (3) 
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One could try and use the Euler method to solve these first-order differential equations, but the 
results are erroneous at best. Therefore, a better way of solving first-order differential equations 
was needed, the Feynman-Newton method, or half step method. Using the Feynman-Newton 
method, the solution to a first-order differential equation, 
 
 (5) 
 
is obtained by using the value of the function q(t) halfway between t and t + Δt. This is shown in 
the following equation, 
 
 (6) 
 
 
which is the algorithm for the Feynman-Newton method. 
 
IMPLICIT NONE 
 
! Declare variables 
1 INTEGER :: I, Icnt 
2 Double Precision X, V, A, dt, Xold, Vold, Xint, Vint, C1, 
C2, Time, TimeX, TimeV, K, C, M 
 
3 OPEN (30, FILE = "F-N.txt") ! Open the output file for 
Feynman-Newton method 
4 OPEN (40, FILE = "Euler.txt") ! Open the output file for 
Euler method 
 
5 Dt = .25 
6 Time = 0 
7 WRITE (30, '(A5, T15, A1, T30, A5, T45, A1, T60, A1, T75)') 
"TimeX", "X", "TimeV", "V", "A" 
8 WRITE (40, '(A5, T15, A1, T30, A5, T45, A1, T60, A1, T75)') 
"TimeX", "X", "TimeV", "V", "A" 
9 PRINT *, "Please input the mass, m" 
10 READ *, M 
11 PRINT *, "Please input the spring constant, k"  
12 READ *, K 
13 PRINT *, "Please input the damping coefficient, c" 
14 READ *, C 
15 PRINT *, "Please input the initial position" 
16 READ *, Xint 
17 PRINT *, "Please input the initial velocity" 
18 READ *, Vint 
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19 C1 = K / M 
20 C2 = C / M 
21 A = -(C1 * Xint + C2 * Vint) 
22 Xold = Xint 
23 Vold = Vint + Dt * A / 2. 
 
24 DO I = 1, 100 
25 X = Xold + dt * Vold 
26 A = -(C1 * X + C2 * Vold) 
27 V = Vold + Dt * A 
28 TimeX = TimeX + Dt 
29 Timev = TimeX + Dt / 2. 
30 WRITE (30, 1000) TimeX, X, TimeV, V, A 
31 Xold = X 
32 Vold = V 
33 END DO    
! Reset variables 
34 A = -(C1 * Xint + C2 * Vint) 
35 Xold = Xint 
36 Vold = Vint 
37 Icnt = 0 
38 X = 0 
39 V = 0 
40 A = 0 
41 TimeX = 0 
42 TimeV = 0 
43 DO I = 1, 100 
44 X = Xold + dt * Vold 
45 V = Vold + Dt * A 
46 A = -(C1 * X + C2 * V) 
47 TimeX = TimeX + Dt 
48 Timev = TimeX + Dt / 2. 
49 WRITE (40, 1000) TimeX, X, TimeV, V, A 
50 Xold = X 
51 Vold = V 
52 END DO 
53 1000     FORMAT (5(E12.5, 3X)) 
54 CLOSE (30) ! Close the output file 
55 CLOSE (40) ! Close the output file 
56 PRINT *, "Output files, F-N.txt and Euler.txt have been 
closed, program is complete!" 
57 PRINT *, "Have a great day!" 
58 END PROGRAM 
 
 
 
 
 

Fig. 2. Source code for a FORTRAN program for the motion of a damped oscillator 
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Figure 2 shows the source code for the program that I used to solve the first-order differential 
equations. In lines 1 and 2 of the program, I declare my variables. Then in lines 3 and 4 I open 
the output files. In lines 5 and 6, I initialize the change in time and the time. In lines 8 and 9, I 
write to the first line of the output files the column labels to be read into KaleidaGraph. Then in 
lines 9 through 18, I prompt the user for the mass on the end of the spring, the spring constant, 
the damping coefficient, the initial position, and the initial velocity. In lines 19 through 23, I 
initialize the initial conditions for the spring. In lines 24 through 33, I perform a DO loop that 
calculates the first-order differential equations using the Feynman-Newton method. In lines 34 
through 42, I reinitialize the conditions to their initial state. Then in lines 43 through 52, I 
perform a DO loop that calculates the first-order differential equations using the Euler method. 
In line 53, I have the format statement for writing the data calculated the DO loops to their 
respective files. In lines 54 and 55, I close the output files. Then in lines 56 through 58, I tank the 
user for using the program and I end the program. 
 
Results and Discussion 
 
Figure 3 shows the position versus time for the Euler method for a Δt of 0.25s and 1.0s. For this 
figure, both values for Δt appear to produce similar results until time reaches about 13 seconds. 
Then the values for Δt = 1.0s just appears to “blow up” and seemingly gain energy, which defies 
the second law of thermodynamics. While the graph of Δt = 0.25s also seems to gain energy, it 
not as drastic at the graph of Δt = 1.0s. The graph of Δt = 0.25s appears to be more accurate that 
the graph of Δt = 1.0s. The graph of Δt = 0.25s is more accurate because it provides more data 
points and the time interval between the data points is lessened. 
 
Figure 4 shows the position versus time for Δt = 0.25s and Δt = 1.0s, this is the same graph as in 
figure 3, but it is zoomed in to show the movement of the Δt = 0.25s curve. This graph shows 
how the Euler method, even for a relatively small time step, produces results that cannot be 
trusted. While, it is better than the results for Δt = 1.0s, Δt = 0.25s does not produce good results. 
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Fig. 3. Position vs. Time for a Δt of 0.25s and a Δt 1.0s for the 
Euler method 
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Fig. 4. Position vs. time for Δt = 0.25s and 1.0s for Euler Method, 
zoomed in to show Δt = 0.25s 

 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
At this point in the experiment, I switched from the Euler method to the Feynman-Newton 
method for solving first-order differential equations.  
 
Figure 5 depicts the position versus time for Δt = 0.25s and 1.0s for the Feynman-Newton 
method. The different values for Δt produce similar results until time reached about 13 seconds. 
At that point, the graph of Δt = 1.0s gets out phase with the graph of Δt = 0.25s. The graph of Δt 
= 0.25s appears to be more accurate than the graph of Δt = 1.0s. This is because the graph of Δt = 
0.25s contains more data points than the graph of Δt = 1.0s and the graph of Δt = 0.25s appears to 
be smoother than the graph of Δt = 1.0s. Because there was only 25 data points for the graph of 
Δt = 1.0s, it appears to be more jagged and rough. Therefore, the graph of Δt = 0.25s should be 
more accurate than the graph of Δt = 1.0s.  
 
Figure 6 shows the plot of velocity versus acceleration.  
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Fig. 5. Position vs. time for Δt = 0.25s and 1.0s for Feynman-Newton method 
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