MATH 466, Spring 2004

Assignment 1

Due Date: Feb 9

IMPORTANT NOTE: A penalty of 30% of total points will be applied to late homework. Write your answers clearly.

1. Do the following problems:

Sec 6.1 : 3(a), 5
Sec 6.2 : 1-4 with 1(a) matrix.
Sec 6.3 : 1(a), 4.
Sec 6.4 : 6, 10.
Sec 6.5 : 3(a), 4(a).
Sec $6.6: 1,3$ and 5 with 2(a) matrix, 6(c), 11 .
2. Show that the Gaussian Elimination with Backward Substitution requires $\frac{n^{3}}{3}+$ $n^{2}-\frac{n}{3}$ multiplications/divisions, and $\frac{n^{3}}{3}+\frac{n^{2}}{2}-\frac{5 n}{6}$ additions/subtractions.
3. Show that $\operatorname{det}(A B)=\operatorname{det}(A) \operatorname{det}(B)$ for $n \times n$ matrices A and B.
4. (Programming) GEpartialpivot.m is MATLAB code for Gaussian Elimination with partial pivoting. Fill out the backward substitution in GEpartialpivot.m and test it with the following matrix:

$$
\left[\begin{array}{cc}
6.0 \times 10^{-7} & 1 \\
1 & 1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{l}
1 \\
2
\end{array}\right]
$$

Compare this solution with Gaussian Elimination without pivoting, which can be obtained by modifying the same MATLAB code. Which one is correct? Explain why these two solutions are different.

