MATH567 Project 3: due on Monday, July 23, 2018

Problem 1 (10 pts): 2D Poisson problem.

The matlab script poisson.m solves the Poisson problem on a square $m \times m$ grid with $\Delta x=\Delta y=h$, using the 5-point Laplacian. It is set up to solve a test problem for which the exact solution is $u(x, y)=$ $\exp (x+y / 2)$, using Dirichlet boundary conditions and the right hand side $f(x, y)=1.25 \exp (x+y / 2)$.
(a) Test this script by performing a grid refinement study to verify that it is second order accurate.
(b) Modify the script so that it works on a rectangular domain $\left[a_{x}, b_{x}\right] \times\left[a_{y}, b_{y}\right]$, but still with $\Delta x=\Delta y=h$. Test your modified script on a non-square domain.
(c) Further modify the code to allow $\Delta x \neq \Delta y$ and test the modified script.

Problem 2 (10 pts): BDF2 and FE schemes for heat equation.

(a) The m-file heat_CN.m solves the heat equation $u_{t}=\kappa u_{x x}$ using the Crank-Nicolson method. Run this code, and by changing the number of grid points, confirm that it is second-order accurate. (Observe how the error at some fixed time such as $T=1$ behaves as k and h go to zero with a fixed relation between k and h, such as $k=4 h$.)
You might want to use the function error_table.m to print out this table and estimate the order of accuracy, and error_loglog.m to produce a log-log plot of the error vs. h. See bvp_2.m for an example of how these are used.
(b) Modify heat_CN.m to produce a new m-file heat_trbdf2.m that implements the TR-BDF2 method on the same problem. Test it to confirm that it is also second order accurate.
(c) Modify heat_CN.m to produce a new m-file heat_FE.m that implements the forward Euler explicit method on the same problem. Test it to confirm that it is $\mathcal{O}\left(h^{2}\right)$ accurate as $h \rightarrow 0$ provided when $k=24 h^{2}$ is used, which is within the stability limit for $\kappa=0.02$. Note how many more time steps are required than with Crank-Nicolson or TR-BDF2, especially on finer grids.
(d) Test heat_FE.m with $k=26 h^{2}$, for which it should be unstable. Note that the instability does not become apparent until about time 1.6 for the parameter values $\kappa=0.02, m=39, \beta=150$.

