MATH567 Project 2: due on Monday, July 16, 2018

Problem 2 (10 pts): ODE(BVP) symmetric discretization.
Program the central finite difference method for the self-adjoint BVP

$$
\begin{aligned}
\left(\beta(x) u^{\prime}\right)^{\prime}-\gamma(x) u(x)= & f(x), \quad 0<x<1, \\
u(0)=u_{a}, & a u(1)+b u^{\prime}(1)=c,
\end{aligned}
$$

using a uniform grid and the central difference scheme

$$
\begin{equation*}
\frac{\beta_{i+\frac{1}{2}}\left(U_{i+1}-U_{i}\right) / h-\beta_{i-\frac{1}{2}}\left(U_{i}-U_{i-1}\right) / h}{h}-\gamma\left(x_{i}\right) U_{i}=f\left(x_{i}\right) . \tag{6}
\end{equation*}
$$

Test your code for the case where

$$
\begin{equation*}
\beta(x)=1+x^{2}, \quad \gamma(x)=x, \quad a=2, \quad b=-3, \tag{7}
\end{equation*}
$$

and the rest of functions or parameters are determined from the exact solution

$$
\begin{equation*}
u(x)=e^{-x}(x-1)^{2} . \tag{8}
\end{equation*}
$$

Plot (i) the local truncation error, (ii) computed solution and the exact solution, (iii) and the errors for a particular grid, say $n=80$. Do the grid refinement analysis to determine the order of accuracy of the global solution. Also try to answer the following questions:

- What happens when $a=0$ or $b=0$?
- If we use the central difference scheme for the equivalent differential equation

$$
\begin{equation*}
\beta u^{\prime \prime}+\beta^{\prime} u^{\prime}-\gamma u=f \tag{9}
\end{equation*}
$$

what are the advantages or disadvantages?
Write another matlab code of a central difference scheme based on (9), and compare the numerical results (solution errors, order of accuracy, CPU time) with the above finite difference scheme (6).
Check [TB] Section 2.15, Example 2.1 for more detail.
Check [TB] Appendix A.3-A. 6 for more detail on how to estimate order of accuracy with grid refinement.

Problem 2 (10 pts): ODE(BVP) with boundary layer.

Consider the finite difference scheme for the 1D steady state convection-diffusion equation

$$
\begin{align*}
\epsilon u^{\prime \prime}-u^{\prime}= & -1, \quad 0<x<1 \tag{10}\\
u(0)=1, & u(1)=3 . \tag{11}
\end{align*}
$$

(a) Verify the exact solution is

$$
\begin{equation*}
u(x)=1+x+\left(\frac{e^{x / \epsilon}-1}{e^{1 / \epsilon}-1}\right) \tag{12}
\end{equation*}
$$

(b) Compare the following two finite difference methods for $\epsilon=0.3,0.1,0.05$, and 0.0005 , (1): Central difference scheme:

$$
\begin{equation*}
\epsilon \frac{U_{i-1}-2 U_{i}+U_{i+1}}{h^{2}}-\frac{U_{i+1}-U_{i-1}}{2 h}=-1 . \tag{13}
\end{equation*}
$$

(2): Central-upwind difference scheme:

$$
\begin{equation*}
\epsilon \frac{U_{i-1}-2 U_{i}+U_{i+1}}{h^{2}}-\frac{U_{i}-U_{i-1}}{h}=-1 . \tag{14}
\end{equation*}
$$

Do grid refinement analysis for each case to determine the order of accuracy. Plot the computed solution and the exact solution for $h=0.1, h=1 / 25$, and $h=0.01$. You can use Matlab command subplot to put several graphs together.
(c) From you observation, give your opinion to see which method is better.

Check [TB] Appendix A.3-A. 6 for more detail on how to estimate order of accuracy with grid refinement.

