2018 NSF — CBMS
Computational Methods in Optimal Control
Jackson State University, Jackson, MS

JACKSON STATE

Mini-Tutorial: Computational Aspects
of Numerical Optimization

Vladislav Bukshtynov
vbukshtynov@fit.edu

Department of Mathematical Sciences
Florida Institute of Technology
Melbourne, FL

July 27, 2018

vbukshtynov@fit.edu

Some Objectives

@ Solving Optimal Control Problem Computationally
© 'Optimize—then—Discretize” vs. "Discretize-then—Optimize"

© Application to ODE-based Optimal Control Problem

MTH 6300 Topics in Num/Comp Mathematics: Numerical Optimization
©FIT, Spring 2018

2/44

@ Solving Optimal Control Problem Computationally

Main Notations for Generalized Optimal Control (Optimization) Problem

minimize/maximize J(x; u)
u

subject to g(x;u) =

state variables x € R™
optimization (control, decision, design) variables u € R”
objective (cost) function(al) J(x;u) : R™ x R" — R*

constraints, governing equations or equations of states (EOS)

> (systems of) linear/nonlinear equalities/inequalities
> (systems of) ODE(s)/PDE(s)
> other requirements, e.g. functional space for u

@ 7,8, h are vector functions in general
@ feasible region (control set/space) U defined by constraints

@ solution (local/global) u* = argmin J(x; u)
uel

@ infeasible solution u ¢ U

3/44

Iterative Optimization Algorithm

mn I

s. t. ucl
Generate a sequence of suboptimal solutions (iterates)
0o 1 2 ko k+l
u,u, U, U u L

@ Choose initial guess u® (and algorithm settings)

@ For k=1,2,... check (computational) optimality of u*, e.g.
> V.J(x*;u*) = 0 (local optimum condition)
» u* reduces J(x;u) up to a necessary level
> other termination conditions (backup slide B1)

@ If OK (optimal) — STOP
@ Find a search direction (update) d* to improve a solution u*
u = uk 1k d
@ Goto?2
@ search direction d* improves the solution in some sense, e.g. d* = —V .7 (x*; u¥)
@ fundamental strategies (gradient-based): Line Search and Trust Region

@ step size o is determined in assumption J(u*™) < 7 (u¥) (backup slide B2) 4/44

Computational Elements of the Generalized Optimization Framework

INPUT:data & _ _ _ _ _ _ _ _ _

- — UPDATE: inputJ

settings J TEST mode — & parameters
l

measurement OPTimization
data :

1 J - evaluation
control/OPT — visualization
INItialization J T A

L termination

search for d*

final OUTPUT &
solution analysis ~

T Muvisualizer
’
’
P4 o =
~

-

> - evaluato

evaluato

5/44

Choice of Proper Software

Main (core) software: OPTimizatiori J - evaluator

@ ideally is self-contained: specialized software
to solve a particular problem

Main software

@ difficult to apply to specific needs or modify Lol

@ best idea: used as a communication and data
processing framework

J-evaluator:

@ to evaluate objective function(s) J(x; u)

@ may require to solve (systems of) (non)linear equation(s), ODE(s), PDE(s)
d-evaluator:

@ to find search direction(s) d

@ may require to solve (systems of) (non)linear equation(s), ODE(s), PDE(s)

@ may require to communicate effectively with 7-evaluator

6/44

Choice of Proper Software (cont'd)

1D search:
@ to find optimal stepsize «
@ depends on the nature of the problem (linearity, convexity, constraints, etc.)
@ may require to communicate effectively with 7-evaluator

Visualizer:

@ to perform analysis of input data (a priori) and obtained solutions (a posteriori)
@ to control the progress of optimization algorithm

@ ideally should not slow down or interrupt main optimization process via fast and

easy access to stored intermediate data
Solver for (systems of) (non)linear equation(s), ODE(s), PDE(s):
@ very problem dependent
@ trade-off: fast vs. accurate

Examples of core software platforms:

@ MATLAB + access to parallel computing, math, statistics and optimization toolboxes

@ C/C++-based scientific environments with added libraries for linear algebra, solving
PDEs, optimization, etc., e.g. FreeFem++

@ separate solvers available in common formats: MATLAB, C/C++, Fortran, etc.
7/44

Visualization and Analysis of Obtained Solution

Data to be visualized (depending on problem):

@ Optimization progress: objective function

> measurement data

> separate parts of objective (how closely data is fitted)

> entire objective vs. iteration number k (to check monotonicity)
@ Optimization progress: optimization/control variables

> optimal or “true” solution (used to generate measurements, then forgotten)
> current solution
> some measures how close they are (monotonicity may not be expected!)
© Other optimization attributes:
> gradients
> state variables (if different from control variables)
> dynamic parameters (search direction stepsize, weighting coefficients, etc.)
> checking other optimization techniques (regularization, preconditioning, etc.)

Before your big project starts, think how to:
@ save intermediate data instead of graphical images
@ keep data in easily convertible formats, e.g. dat or txt files with plain numbers

@ convert your data into high resolution images or send to external software
8/44

Testing (General Debugging) and Dealing with Problems

J-evaluator
@ Test-case #1: run for u = u* to check 7 = J~
@ Test-case #2: if J # J*, check you are able to control |7 — J*| — 0 by tuning
solver parameters (refining mesh, applying higher-order schemes, etc.)
@ Test-case #3: run trustful and commonly used benchmark models and compare
your outcomes with published results

d-evaluator (method-dependent)

@ Test-case for gradient-based method: run “kappa-test” to check your gradient is
accurate and consistent with its FD approximation (see slides 34-36 for details)

main OPT-part

@ Test every component separately

@ Test communication within the entire framework (variables, dimensionality, names,
solution files, etc.)

@ Tuning Test: for the same problem change one parameter/technique at a time

@ Robustness Test: for fixed set of parameters/techniques run algorithm for the
same problem varying initial data; then explore the limits and repeat tuning

@ Applicability Test: apply algorithm to problems at different scales (small,
moderate, large)

9/44

© 'Optimize—then—Discretize” vs. "Discretize-then—Optimize"

Practice Example: Fitting Data by ODE-constrained Optimization

Problem: f(t)-parameter identification in BVP-2 by fitting (continuous) data,
continuous formulation

. 1 /7 2
QQJMthEA(%W)ﬁ
s.toay” +ay +azy =1(t), y(0) =y, y(T)=yr

where data (X%,) are available continuously over interval [0, T], and constants a1, az, a3
are given.

Approach:
@ solve Problem using adjoint-based gradient method (Lagrange multiplier approach)
@ derive gradients by “optimize—then—discretize” approach — optimality conditions
and optimization algorithm are based on continuous form of the problem
Alternative approach:
@ derive gradients by “discretize-then—optimize” approach

@ solve Problem using regular gradient-based method by approximating objective
gradient using finite difference (FD) schemes — expensive in case of fine
discretization in t

10/44

Practice Example: "Optimize—then—Discretize” — Deriving Gradient

Objective function ;
Jef)=3 [(-5
Forward problem (governing equation, equation of state) by BVP-2
ay” + a2y’ + asy = f(t),
y(0)=yo, y(T)=yr
Lagrangian (augmented objective function)

Ly, t;f,0) = T(y, t: f) + (ary” + a2y’ + asy — f(t),)

(FP)

X
state variable y(t)

control variable f(t)

adjoint variable (Lagrange multiplier) ¥(t)

inner product defined in x-space (-, -)X, eg., if x =1L

-
(A0, B,y = [fi ot
0
Thus, we have
. _ 1 T ~\2 T " ’
ﬁ(yvfrf’w)*i (y—y) dt+ [a1y” + a2y’ + asy — f(t)] ¥ dt
° ° 11/44

Practice Example: “Optimize—then—Discretize” — Deriving Gradient (cont'd)

Riesz Representation Theorem: 1l-order variation for Lagrangian L(y, t; f, 1) can be
expressed (only linear terms)

SL(y, t: F) = (ViL, 8F) +(VyL, by) +(VyL, 6U) +...

“

@ smaller (than linear) terms “..." (neglect)

@ variations (perturbations) for control, state and adjoint variables f,dy, d1)
(arbitrary chosen functions)

@ gradients w. r. t. control, state and adjoint variables VL,V ,L VL

@ Fréchet differential (V¢L, 6f) will give expression for (Fréchet) gradient
(will be reduced, hopefully to 0, during optimization)

@ setting (V, L, dy), to 0 will give adjoint equation(s)

@ setting (V, £, 1) to 0 is natural as it represents our forward problem (FP)

12/44

Practice Example: “Optimize—then—Discretize” — Deriving Gradient (cont'd)
Goal: Derive 1-order variation for Lagrangian
. _ 1 T ~\2 T " /
Ly tf)=5 [(y-7)de+ [a1y” + a2y’ + asy — £(t)] ¥ dt
0 0

consistent with Riesz Representation Theorem and set it to 0 (KKT conditions)

T

.
5ﬂ%tﬂ¢%=l U—?%WdP+A [a1(0y)" + a2(dy)" + asdy — 6f] ¢ dt

T
+/ [a1y” + a2y’ + asy — f(t)] 69 dt
0

@ second term is not consistent: integrate by parts

@ third term: fOT [a1y” + a2y’ + asy — f(t)] 51 dt = 0 due to (FP)
T nT T / !
= [6=yt fawion)]] - [@y Gy ar

T T T
+ [azz/)éy]oT —/ (a29)' 6y dt—|—/ azdy dt—/ Y Of dt
0 0 0

13/44

Practice Example: “Optimize—then—Discretize” — Deriving Gradient (cont'd)
@ third term fOT(alz,b)’(éy)' dt is still not consistent: integrate by parts
T T
S0y F,0) = [=)oy de+ [awy)]] — [@0)y]] + [(arw) oy e
0 0
T T T
+[agz/)§y]on/ (azw)’5ydt+/ agw(Sydtf/ Y 6F dt
0 0 0

@ boundary terms [(alw)’éy]oT and [a»3y]] are both zeros due to perturbation
system — variational form of (FP)

a1(8y)” + a2(8y)’ + asby = of,
6y(0)=0, 6&y(T)=0

@ now we have fully consistent form

T . T

- / (—y)ofdt +[ap(dy)], + / [(y = 7))+ (a10)” — (a20) + as¢] by dt
0 0

=(V¢L, 6f>L2 +HV,L, 5}’>L2
T T

:/ Vi Lof dt +/ V, Ly dt
0 0

14/44

Practice Example: "Optimize—then—Discretize” — Solving Problem

Adjoint-based gradient derived in L, functional space
Vil = —1)(t)
Adjoint ODE problem to be solved to find (t)
(ay)" = (a29) +asp =y — 7,

(AP)
P(0)=0, ¥(T)=0
Discretizing:
. T—1t

@ time: tp =0, t1 =ty + At, b =ty +2At, ...; At= n

@ states, controls and adjoints:
Yo y(to) fo o

= | 2= = B e

Yn y(T) fn ¥n

@ objective: J(f) = 1 27 (vilf) — 3) At

Q: in case measurements {)"/j}j'\il are pointwise (not continuous, M # n + 1), how does

this affect derivation of our gradient? Hint: J(f) = 3 32, (y(f) —)°

15/44

Practice Example: "“Optimize—then—Discretize” — Solving Problem (cont’d)

Solution: computations for iterative reconstructions
@ Discretize time; initialize vectors for states, controls and adjoints
@ Obtain and store measurement data (%, ;)
@ Choose initial guess f° for control
@ Solve (discretized) forward problem (numerically) to find y*
ay” + ay' + asy = f(t),
y(0)=yo, ¥(T)=yr
@ Evaluate objective: J(f¥) = %27:_11 (vi(F) —)7,-)2 At
@ For k =1,2,... check optimality of f¥, if OK (optimal) = STOP
@ Solve (discretized) adjoint problem (numerically) to find ¥
(a19)” = (229) + a9 =y — 3,
¥(0)=0, ¥(T)=0
@ Evaluate gradient: VeL(y*; f 9p*) = —ap*
© Improve solution by finding optimal stepsize a
FRrL gk _ akvfﬂ(yk; fk7¢k)

(FP)

(AP)

k

@ k<« k+1landgoto4

16 /44

Practice Example: "Discretize—then—Optimize" — Deriving Gradient

Discretizing main objects:

@ time: to =0, ty = to + At, th = to + 2At, ...; At— T —H
@ states, controls and adjoints: !
Yo y(to) fo Yo
y=| " | = yt) || A p= | "
Yn ¥(T) fn ¥n
@ objective:)
I =53 =)' b
Discretizing forward problem:
@ continuous formulation (residual form)
ary” 4 ary’ + asy — f(t) =0, (FP)

y(0) =yo, y(T)=yr
@ discretized form (system of n — 1 equations)
g(y1, Y2,y Yn-1; fo,f,...,) =0 (FPd)
17/44

Practice Example: “Discretize—then—Optimize” — Deriving Gradient (cont'd)

Lagrangian (augmented objective function)
[’(ylmyZv ceey Yn—1, fo, fi,..., f, 1/)1’#)27 cee 71/}"—1)

n—1 n—1
1 -
= Ez(yl 7yl)2At+Zwl 'gl—(ylvyzv"'my"*l; f67ﬁ7"'7ﬁ1)
i= i=1
KKT optimality conditions: g—ﬁ =0, % =0, (,%: =0
@ equations of states: linear system of n — 1 equations, i =1,2,...,n—1
oL
a—w:g,-(yl,yg,...,y,,_l; fo,f,...,f) =0 (FPd)
@ adjoint equations: linear system of n — 1 equations, i =1,2,...,n—1
oL = (yi y,)At+n§:1wj Oa,y2, oy Yno1; fo, f, ..) =0 (APA)
8}/, 8))))))

@ gradient evaluation: n+ 1 components

8,6 n—1
ijaf Yo¥o Yoot o iy B), P =0,1,0
Main complica‘uon. every gradient evaluation requires computing (n — 1)? derivatives

g—f{ and (n — 1)(n+ 1) derivatives g—ég = consider automatic differentiation (AD) ;
18/44

Practice Example: "Discretize—then—Optimize" — Solving Problem

Solution: computations for iterative reconstructions
@ Discretize time; initialize vectors for states, controls and adjoints
@ Obtain and store measurement data (?,-,)7,-) and choose initial guess f° for control
© Solve (discretized) forward problem (numerically) to find y*
gy, y2,. - ¥Yn—1: fo,f,...,f) =0, i=12...,n-1 (FPd)
. —1 ~\2
@ Evaluate objective: J(f¥) = 2 37 ' (vi — 7)° At
@ For k=1,2,... check optimality of f*, if OK (optimal) = STOP
@ Evaluate aé;{ and solve (discretized) adjoint problem (numerically) to find 1p*

Z%agj——(yf—%)m, i=12,...,n-1 (APd)

@ Evaluate ngj and compute (n+ 1) components of gradient:

.
Vfﬁ(yk;fk7¢) Zw]ggfjﬁ i:071""7n

© Improve solution by finding optimal stepsize a*
FRHL gk _ akvfﬁ(yk; fk’wk)

Q k<« k+1landgoto4
19/44

© Application to ODE-based Optimal Control Problem

Example of ODE-based Model: Lotka—Volterra Equations

Lotka-Volterra (LV) Predator-Prey model is represented by a pair of 1-order nonlinear
ODEs

Xl = (a 75X2)X1

X2 = (=7 +dx)x
to describe dynamics of biological systems, i.e. change in predator/prey populations

@ number of prey (rabbits, hares, etc.) xi(t)

@ number of predators (foxes, wolves, etc.) x(t)
@ instantaneous growth rates of two populations x; = %, Xp = % w.r.t. time t
@ parameters describing interaction between two species «, 3,7,6 > 0

Physical meaning and assumptions:
@ Prey population finds ample food at all times
@ Food supply of predator population depends entirely on the size of prey population
© Rate of change of population is proportional to its size
@ During the process, environment does not change in favor of one species
@ Predators have limitless appetite

Kolmogorov model: a general framework that models dynamics of ecological systems
with predator-prey interactions, competition, disease, and mutualism
20/44

Numerical Integration of ODEs Using MATLAB: 0de23 vs. ode45

Available MATLAB functions for numerical solution of ODEs:

@ ode23 solves nonstiff ODEs employing 2- and 3-order Runge-Kutta formulas for
medium accuracy

Syntaxis (mandatory/optional):
[t, y, te, ye, ie]l = ode23(odefun, tspan, yO, options)
> t, y: each row in solution array y corresponds to a value returned in column

vector t
> odefun: function handle which defines the functions to be integrated
> tspan: interval of integration, specified as a vector [to t1 t> ... tr]; at least

two elements [ty t¢] should be specified
> y0: ICs specified as a vector, must be the same length as odefun
> options: options structure (look at MATLAB tutorial)
> te, ye, ie: optionally find where (event) functions of (t,y) are zero

@ ode45 solves nonstiff ODEs employing 4- and 5-order Runge-Kutta formulas for
higher accuracy
Syntaxis (mandatory/optional):
[t, y, te, ye, ie] = ode45(odefun, tspan, yO, options)

https://www.mathworks.com/help/matlab/ref/ode23.html
https://www.mathworks.com/help/matlab/ref/ode45.html

21/44

https://www.mathworks.com/help/matlab/ref/ode23.html
https://www.mathworks.com/help/matlab/ref/ode45.html

Problem: Optimization Model Constrained by LV Equations

Problem: u(t)-parameter identification in nonlinear IVP-1 system defined by
LV-problem by fitting (continuous) data x; (t) and x5 (t), t € (0, T]

T(It? T (x1, %, t;u) = B1 /OT(xl —)"(1)2 dt + (32 /OT(xz —)"(2)2 dt
@ subject to following Lotka-Volterra Predator—Prey model
X1 = (a—Bx)x1 — u(t)x
Xo=—(y—90x1)x — u(t) x
x1(0) = x?, x2(0) = X3, te (0, 7]
@ when data X;(t) and %(t) are available continuously over interval [0, T], and

@ constants «, 3,7, > 0 are given.

Approach:
@ solve Problem using adjoint-based gradient method (Lagrange multiplier approach)

@ derive gradients by “optimize—then—discretize” approach — optimality conditions
and optimization algorithm are based on continuous form of the problem

22 /44

LV Optimization Model: Deriving Gradient

Objective function

T (x1, %2, t;u) = fr /OT(xl —)"(1)2 dt + 3 /OT(XQ —)"(2)2 dt
defined over control space

U={u(t) € [0, T]: 0<u(t)<1forae tel0,T]}
Forward problem (governing equation, equations of state) by LV-problem

X1 = (a—Bx)x1 —ux
Xé:—(’y—(SX1)X2—uX2 (FP)
x1(0) =x), x(0)=x3, te(0,T]

@ state variables xi(t) and x(t)
@ control variable u(t): keeping in mind additional constraint 0 < u(t) <1

@ two adjoint variables (Lagrange multipliers) ¢1(t) and 12(t) will be assigned for
each equation in LV-system (FP)

23/44

LV Optimization Model: Deriving Gradient (cont'd)

Lagrangian (augmented objective function) defined in L, functional space

T T
L(x1,x2, t; u,1)1,12) :51/ (a—%)° dt+52/ (0 — %) dt
0 0

T T
+/ [Xl — (Ot*ﬂXg)X1+UX1] U dt+/ [)52+(’775-X1)X2+UX2] o dt
0 0

As done previously (see Part 12), 1-order variation for this Lagrangian

T T
5£(X17 X2, t; u, wlv "/’2) = 261/ (Xl -)?I)JXI dt + 2ﬁ2/ (X2 - 5’(2)6X2 dt
0 0
.
+ / [6%1 + Bx1 0% — (v — B x2)0x1 + x10u + udxi] Y1 dt
0

T T
+ / [X1 — (0 = Bx2)x1 + ux1] 64y dt + / [X%2 4+ (v = 0 - x1)x2 + uxz] 9o dt
Jo Jo

-
+/ [0 =8 - x20x1 + (7 — 0 - x1)0x2 + x20u + udx2] 12 dt
0

should be consistent with Riesz Representation Theorem and set to 0 (KKT conditions)
T T T
O0L(x1, %2, t; U, 1, 12) :/ VuﬁéudtJr/ VX£5xdt+/ VLo dt
0 0 0

24/44

LV Optimization Model: Deriving Gradient (cont'd)

Due to (FP) 4th and 5th terms

T T
/ [X1 — ((.Y — 3 X2)X1 + UX1] 51;91 dt =+ / [XQ + (’\/ — 5 . X1)X2 + UX2] 61/:2 dt =0
Jo J0

Some parts of 3rd and 7th terms are not consistent: integrate by parts
T ; T
/ wléx'l dt = [wléxl]o — / ’(!}1(5X1 dt
0 0

T T .
/ V20X dt = [’lﬁz(sXQ];— - / 1Padxo dt
0 0

Boundary terms [1)10x1], and [1)20x2], are zeros due to perturbation system — variational
form of (FP)

dx1 = —fx10x2 + (o — Bx2) dx1 — x16u — udx
0% =06 x0x1 — (Y — 0 - x1)0x2 — x0u — udx»
5x1(0) =0, &x(0)=0, te(0,T]

25 /44

LV Optimization Model: Deriving Gradient (cont'd)

And now we have fully consistent form
T T

6£(X1, xo, t; U, 1[)1, ’lﬂ2) = 2,81 / (X1 —)?1)§X1 dt + 2,82 / (Xz —)?2)5X2 dt

0 0

T T
+ 1/)1(T)(5X1 — / ’(/)1(5X1 dt + 1/)2(T)5X2 — / 1/)25X2 dt
0 0
-
+ / [Bx10x2 — (¢ — Bx2)0x1 + x10u + udxi] ¢ dt
0

.
+ / [0 % x1 4+ (v — 0 - x1)dx2 + x20u + udx2])2 dt
0

after grouping all terms by factoring du, dx1 and dx»

T
OL(x1, X2, t; U, 1, 12) = / [x1¢1 + x21p2] du dt

T

+ 1(T)ox1 + 1,01 +28i(x1 —X1) — (= Bx2)p1 + ughy — 6 - XQL/Jz] Oxp dt

T
+ 2 T)ox2 +

S— —

1112 +2082(x2 — %2) + Bxathr + (v — 0 - x1)yh2 + u’L/)z:| Ox> dt

26/44

LV Optimization Model: Optimizing in Discretized Settings

Adjoint-based gradient derived in L, functional space
VL = x(t)hr(t) + xa(t)e2(t)
Adjoint ODE problem to be solved to find v1(t) and t»(t) with terminal conditions
U = 201(x1 — %1) — (o — Bx2)h1 + uh1 — dxothn

o = 2Ba(x2 — %) + Bxaths + (7 — xa)2 + wihs (AP)
1/}1(7—) = 07 1/)2(7—) = 07 te [07 T)

Discretizing:

o timet=[tots ... ta]7, to=0, 1 =to+At, ...; At= T;to
@ states, controls and adjoints:
x x5 uo v P
T e IS B IRV) T
X I

@ objective: J(u) = B S0 (d(u) —)2 At + 5 X0 (d(u) — %)% At
27 /44

LV Optimization Model: Complete Optimization Algorithm (iterative)

Solution: computations for iterative reconstructions
@ Discretize time; initialize vectors for states, controls and adjoints
@ Obtain and store measurement (analytic/synthetic) data (%, %{) and (¥, %)
© Choose initial guess u® for control
@ Solve (discretized) forward problem (numerically) to find x* = [x§ x4]
X1 = (a— B x)x1 — u(t)xq
Xo = —(y—dx1)x — u(t)x (FP)
x1(0) =x), x(0)=x3, te(0,T]
O Evaluate objective: J(u) = 81 X0 (xi(u) — %)° At + B2 07 (xd(u) — 4)° At
@ For k =1,2,... check optimality of u¥, if OK (optimal) = STOP
@ Solve (discretized) adjoint problem (numerically) to find 1% = [¢¥ 1p4]
1 =2B10a — %) — (a — Bx2)th1 + uthr — Sxatho
Yo = 2Ba(x2 — %) + Bxathy + (v — 6x1)2 + iy (AP)
P1(T) =0, 2(T)=0, tel0,T)
@ Evaluate gradient: V,L(x*; u*, 1) = x¥ o 9f + x5 o X
@ Improve solution by finding optimal stepsize a*: u**! = u* — akVuL:(xk; uk, wk)

@ k< k+1andgoto4
28/44

Benchmark Models for Control u(t): models_ctrl.m

Goal: to check computational performance of optimization framework in reconstructing
control functions u(t) of different level of complexity

u(t)

Model #1 Model #2 Model #3
constant function smooth periodic discontinuous (step/signum)
_ -1 us — lg us
u(t) =03 u(t) = tcos (3t) +0.5 u(t)= isign[cos(5t)] + 0.5
1 1 1
—u,0 —u,0
08 08 BRSO 08 BRSO
o0 e 2%°
S

0.4 Ul 0.4
0.2 0.2 0.2

0 5 10 15 0 5 10 15 0 5 10 15

t t t
110 120 120
100 _xl(l) _xl(l) _xl(l)
—x,0 100 — %0 100 — %0
90
80 80 80
g g
i 60 60
60
40 40

50
0 5 10 15 0 5 10 15 0 5 10

t

15
29/44

Measurements: Analytic vs. Synthetic

Real data are good, but

@ not available for every model measurements

analyt/synth

@ may not be used to validate accuracy and
performance of computational framework

Analytic measurements:

@ Find analytic functions (exact solutions) x1,ex(t), x2,ex(t) and wuex(t) that satisfy
forward problem (FP)

@ Discretize time t € [0, T] to obtain vector t = [to t1 ... ta]
© Evaluate xq,ex(t), x2,ex(t) to obtain two vectors X; and %>

@ Use analytic measurements (¥;,%) and (%, %) to substitute real data

e It is hard to implement for complex models, but

e may also be used to check accuracy of J-evaluator

30/44

Measurements: Analytic vs. Synthetic (cont'd)

Synthetic measurements:

@ Derive analytic function (exact solution) uex(t)
@ Discretize time t € [0, T] to obtain vector t = [to t1 ... t]"

@ Solve numerically forward problem (FP) to obtain solutions for xi(t) and x2(t) in
terms of two vectors X; and k.

@ Use synthetic measurements (¥, %) and (%, %) to substitute real data
e It is simple to implement, but

e requires interpolation if t-discretization is changed over optimization process or
pointwise measurements are used

@ m-code measurements.m to obtain synthetic measurements

data = [tt zeros(Nt+l,1) zeros(Nt+l,1)]; % preallocation to structure data matrix
[Cf, xlmeas, x2meas] = £(0.0, u.ex, zeros(size(u.ex)), params, data); % calling J-evaluator
data(:,2:3) = [xlmeas x2meas]; % updating data matrix

31/44

Choosing Parameters and Tuning Optimization Algorithms

Computational algorithm: opt_lotka volterra.m

main OPT-part:
J-evaluator:
d-evaluator:

1D search for a:
visualizer:

written manually (adapted from previous model)
m-function using ODE solver ode23/45 for (FP)
m-function using ODE solver ode23/45 for (AP)
& analytically defined V,J for SD, CG, BFGS
m-function for Golden Section & bracketing-Brent
m-code with subplots

Main parameters: params.m

[MATLARB]
[MATLAR]
[MATLAB]

[MATLAR]
[MATLAB]

@ Model: t €[0,15], n =100, x{ = x§ =50, a =1, 3=0.01,y=1, § = 0.02

@ Optimization: 1 = B2 = 1.0, ujni(t) = 0.5

@ SD, CG, BFGS: termination € = 107°, knmax = 200; BFGS restarts = 2,5, 10

GS: search interval [0,107°], termination e, = 10~°

@ BB: initial interval [0, 1076]; bracketing MAXITER = 20, GLIMIT = 100.0;
Brent: TOL = 10™°, ITMAX =2

32/44

Choosing Parameters and Tuning Optimization Algorithms: params.m

% choosing mode & solution method
mode = 'OPT';

method = 'SD';

BFGSrst = 2;

o

OPT or TEST
sD, CG, BFGS
restart parameter for BFGS

o

o

o

MODEL parameters:

% t-domain
ti = 0; tf = 15; % t-domain
Nt = 100; % number of discrete intervals in t-domain

% x-solution

x1i = 50.0; x2i = 50.0; initial conditions for LV-IVP

% coefficients in the main LV-ODE system

paramsODE = [1.0 0.01 1.0 0.02]; % alpha, beta, gamma, delta

modelU = 2; % exact u(t) model number (1, 2, 3)

o0

% OPT setup:
objWeight = [1.0 1.0];
u-ini = 0.5;
u-l = 0.0; u-u = 1.0;

o

weight coefficients in objective
initial guess for u(t) - constant
lower and upper bounds for control (for later use)

o

o

% [SD, CG, BFGS] - parameters for alpha stepsize search
methodAlpha = 'GS'; % method for alpha stepsize search: GS, BB
% (1) Gs

o

alphaA = 0; alphaB = le-6;
alphaEps = le-9;

% (2) bracketing-Brent toolbox
AX = 0; BX = le-6;

MAXITER = 20;

GLIMIT = 100.0;

TOL = le-9; ITMAX = 2;

search interval [a, b]
tolerance for search termination

o

min_brack: initial bracketing interval [a, Db]
min_brack: max number of iterations

min_brack: maximum magnification for parabolic-fit step
Brent: tolerance & max number of iterations

o0 o

o0

o0

% termination

epsilonF = le-9;
epsilonA = le-9;
kMax = 200;

o

tolerance (#1) relative objective decrease
tolerance (#2) relative solution decrease
max number of iterations (#3) 33/44

o

o

Checking Quality of Discretized Gradients: TEST Mode

INPUT: data & uPDATE:input? LD case implementation (by FD-1):
settings TEST mode & parameters f/(X) B f(X n AX) _ f(X)
control/OPT Ax ’

iNlaflzation F(x + e Ax) — f(x)
K =
measurements e f/(x) - Ax

analyt/synth if Ax >0 and e < 1.

—1

Extension for current multidimensional case, u € R”, “kappa-test”:

(u+ edu) — J(u)
€ (VuJ (u), du)

(&)=

@ ‘“cheap test”: requires minimum 2 J-evaluations

for fixed u, e.g. Su = u, compute r(¢) for a range of ¢, e.g. ¢ = 107 =~ 10°

@ ‘“expensive test”: requires n+ 1 J-evaluations

for fixed €, e.g. € = 107°, perform test changing du: [t 00 ... 0]7,
[0uw0...0]",...,[000 ... uy]” (checking sensitivity to every u-component)

34/44

Checking Quality of Discretized Gradients: TEST Mode (cont'd)

LV-problem: “cheap test” for gradient in Model #2

kappa-test (cheap) kappa-test (cheap)

1.05 10

1.041- | 1

1.031

1.02-

10°
1.01- -_—
e
— I
S
-2)
“
0.99- -
10

0.98

097

0.96

2
0.95 -15 -10 -5 0 10 -15 -10 -5 0
10 10 10 10 10 10 10 10
€ €

@ correctness of gradient: range of € spans 8-9 orders of magnitude

@ well-known effects: k(e) deviates from the unity:
> for very small values of ¢ due to subtractive cancelation (roundoff) errors
> for large values of € due to truncation errors

@ quantity log;q |<(€) — 1] shows how many significant digits of accuracy are
captured in gradient evaluation

35/44

Checking Quality of Discretized Gradients: TEST Mode (cont'd)

LV-problem: “expensive test” in Model #2

kappa-test (expensive)
251

A °
oo .
o % o °
15 0y *@% o @ .) L
L]
° oo _© ° o oo
Le e - a0 _— - Z .
1 —o® ™o 00 g0 i) *...f o ® ®
o []
058 o _o® ® % , oo Lo
° o® ° .
g of®e o
_ost
s
-15} °
ol
25 '] . . . ,
[20 40 60 80 100

control/gradient component #, i

@ correctness of i-th gradient component: component-wise sensitivity analysis
(accuracy)

@ easy problem identification: accuracy of gradient vs. sensitivity by single controls

@ both tests, “cheap” and “expensive”, may be repeated throughout the
optimization process to control error/loss of sensitivity propagation
36/44

Improving Quality of Discretized Gradients

Q: What can we do to improve quality of gradients, and thus, to expect better
performance of optimization?
For current problem:
@ refine time discretization: check n = 50, 100 (current), 500, 1000
(goes to homework)
@ use higher order ODE solver: change ode23 (current) to ode45
(goes to homework)

@ change parameters for ODE solver: use keyword odeset to check/change settings
(see example below & next slide)

>> odeset

AbsTol: [positive scalar or vector {le-6}]
RelTol: [positive scalar {le-3}]
NormControl: [on | {off}]
NonNegative: [vector of integers]

37/44

Improving Quality of Discretized Gradients: Tuning ode23

@ odeset(’RelTol’,1e-3,’AbsTol’,1e-6); CPU elapsed time = 4.0355s

105

104

103

102

101

1

K(e)

099

098

097

kappa-test (cheap)

@ odeset(’RelTol’,1e-9,’AbsTol’,1e-12); CPU elapsed time

105

104

1.03

102

101

X(©)

1

099

098

097

kappa-test (cheap)

()

x(i)

kappa-test (expensive)

0 40 0
controllgradient component #,i

kappa-test (expensive)

100

= 260.4798s

0 40 60
control/gradient component #, i

100

38/44

First Optimization Results: Model #2 (SD + GS)

10

10

10

10

120

objective function (log-scaled), f = 12.0173

50

100
iterations, k

solution: xl(l) & Xz(‘)

200

500

400

300

200

100

-100

-200

=300

control u(t): iteration #200

gradient

0

39/44

First Optimization Results: Model #2 (BFGS,s;—s + BB)

" objective function (log-scaled), f = 0.017532 control u(t): iteration #63

10

10°

10°

10*

10°

10"

107° 025

0 10 20 30 40 50 60 70 0 5 10 15
iterations, k t
solution: xl(l) & Xz(‘) x10° gradient
120 1

0.5

-15
0

40/44

First Optimization Results: Model #1 (SD + GS)

objective function (log-scaled), f = 12.3216 control u(t): iteration #200
10 0.55

10
10

10

10 0.25
0 50

100
iterations, k t

solution: x_(t) & X, (t gradient
Q) & (1) 350

300
250
200
150
100

50

41/44

First Optimization Results: Model #1 (BFGS,st—s + BB)

objective function (log-scaled), f = 0.2434

10

20

30 40
iterations, k

solution: xl(l) & Xz(‘)

50

60

70

0.55

0.5

0.4

0.35

control u(t): iteration #70

- -0
—e—u(t)

U

1200

1000

800

600

400

200

-200

—-400

600

t

gradient

15

15

42/44

First Optimization Results: Model #3 (SD + GS)

10

10

10

10

objective function (log-scaled), f = 36.3881

50

100
iterations, k

solution: xl(l) & Xz(‘)

150

200

400

300

200

100

-100

-200

-300

—-400

-500

control u(t): iteration #200

gradient

0

43/44

First Optimization Results: Model #3 (BFGS,st—s + BB)

objective function (log-scaled), f = 5.0007

10

20 30
iterations, k

solution: xl(l) & Xz(‘)

40

50

100

80

60

40

20

control u(t): iteration #43

gradient

44 /44

BACKUP SLIDES

B1: Termination Conditions

Based on
@ sufficient changes in the solution:

» absolute decrease ||uk — uk’1|| <€

- [Jut—u 2]
» relative decrease e <€

@ sufficient changes in the objective:
> absolute decrease |7 (u¥) — J(u71)| < ¢
. Ky_ (k=1
» relative decrease ‘44—2‘7 UJ)(ULZ;J) <e (%)
© computational efforts:
» max number of optimization iterations K: k < K (%)
» max number of objective evaluations

> limit on elapsed computational time T: t < T

Q: (%) are recommended options (problem dependent). Why?

B2: Golden Section (GS) Search Method

Q: Bisection requires n = 2k function f(x) evaluation. Could we reduce n?

Golden section (ratio):

a b
/—%_%
¢ s 3 atb_a_14V5 e
a+b a b 2
‘A ° ° B- Property: If Xi is a GS for AB & X is a GS for AB
X X = X isa GS for AX; & Xz is a GS for X;B
VB —1

Finally: introduce a = > then x1 = axa + (1 — a)xg, x2 = (1 — a)xa+ axs

Parameter: tolerance ¢ > 0 to terminate iterations

k=02 no% b
R X Method:
R H @ For initial interval Iy = [a, b] compute:
Iﬁ_l(ﬂgl_.-._.bl_'_)x x1 = aa+ (1—a)b, xx=(1-a)a+ab
_ @ Compare f(x1) and f(x2), if
k=1 (b) I (a) fa)<f(xe) = ai=a bi=x, a=x

ap b, X (b) f(Xl) > f(XQ) = ai=x1, bh=b, X1 =x

B2: Golden Section (GS) Search Method (cont'd)

@ Get a new interval h = [a1, b1] of length di = by — a1 = a(b — a)

@ For k =2 use X1 as a new value x; or x»
@ Perform the same process iteratively for kth step, if

> f(X2k71) < f(sz) = f(Xz) = f()_(kfl) known = just compute f(Xl)
> f(xok—1) > f(xk) = f(x1) = f(Xk—1) known = just compute f(x2)

@ Get a new interval Iy = [ax, bi] of length dk = by — ax = ak(b —a)

@ Terminate if di = by — ax < €:

. . . b—a
> number of iterations/f-evaluations k = n > log 1 , a= ‘/5271 ~ 0.62
o €

K
@ Approximate x*, e.g. x* = X with error ~ o*(b — a) = (%) (b—a)

Compare the method error for (B)isection and GS search (same # of f-evaluations n):

S) e (G2

B3: Computational Analysis for Rate of Convergence

) _ [|
le<r ~ o —w] -
for 1D case:
|ek+1‘ = C|ek|r = logyo ‘ek+l| = logyo C + r - logy ‘ek|~

MATLAB's polyfit function to approximate b = log;, C and r as coefficients in
y = b+ rx, x = logy, ||, y = logy, €.

Example: comparing performance/convergence rate r for some model

bisection golden section Newton
0 0 0
) i -2
E— I -4 g4
© o ©
g -0 . g -0 E -
N g -8
B = E 0 B = 2 0 B -4 -2 0
log, , e

« K
log, [¢"| log, le’]

r=0.7533, C =0.1348 r =0.8441, C = 0.2404 r =1.9573, C = 0.2347

B4: Optimization Algorithms — Overview

Algorithms
Examples Strengths Limitations
Classical Methods Gradient-based Optimality Global optimum
methods, Line guaranteed guaranteed only

Search, Pattern
Searches, etc.

(KKT condition)

in convex cases

Evolutionary Algorithms

PSO, GA,
Differential
Evolution, etc.

Can be
customized and
easily adapted

Optimality
guaranteed in
limited cases (if

any)

Global Search Optimizers Branch & Can find global Can be
Bound, Cutting optimum of computationally
Plane, etc. nonconvex intractable
problems
Hybrid Methods PSO-MADS, Combine Heuristically
rGA-SQP, etc. strengths of done through
different trial and error

algorithms

	Solving Optimal Control Problem Computationally
	``Optimize–then–Discretize'' vs. ``Discretize–then–Optimize''
	Application to ODE-based Optimal Control Problem
	Appendix

