
Physics 206b 
Homework Assignment IX 

SOLUTIONS 
 

1. In the circuit below, the resistance is Ωk37  and the capacitor is 14 nF. 
After switch S is closed, how long will it be before the voltage difference 
across the capacitor is ½ E? 

First, understand the Physics: The EMF source provides an 
EMF of E. This causes a current to flow and charges begin to 
accumulate on the capacitor’s plates. As charge accumulates, 
the capacitor’s plates generate a potential difference 

between them of 
C
QVC =  where  is the accumulated charge and 

 is the capacitance of the capacitor (which is a constant 
determined solely by the mechanical construction of the 
capacitor). Well, the rate of current flow through the 
resistor is determined by Ohm’s law, 

Q

C

IRVR = . Here’s the 
crucial point: The potential to be used in this is , the 
potential difference between one side of the resistor and the 
other. The potential generated by the capacitor has the 
opposite sign of the potential of the EMF source. Thus, as 
the charge on the capacitor grows, the potential difference 
between the two sides of the resistor will diminish and, by 
Ohm’s law, the current will be reduced. But when the current 
is reduced, the rate at which charge accumulates on the 
capacitor will also be reduced. This slows down the rate at 
which  grows and so on. 
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Fortunately, this can be handled mathematically very 
easily using some tools that you don’t have yet (unless 
you’ve taken Calculus). But the result is still simple. In 

this case, we have ⎟⎟
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C eVV 10 . Here, RC=τ , the product of 

the resistance and the capacitance. (The resistance to use is 
the total resistance between the EMF source and the 
capacitor, by the way. It does not have to come before the 
capacitor. We might see a circuit where there are two 
resistors, one in series with the capacitor “before” it and 
one in series with it “after” it. Just add the resistances in 
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the usual way, in this case.)  is the potential difference 
applied to the capacitor and resistor. It is the potential 
difference responsible for the current flow which results in 
the charging of the capacitor. In this case, we have . 
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Now, we want to find the time at which 
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this in the expression above, we have ⎟⎟
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(divide through by the voltage and subtract appropriately) 
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To get rid of the exponentiation, we take the natural 
logarithm of both sides of this. Caution: Do not 
inadvertently take the common logarithm! Usually, calculators 
will denote the natural logarithm as “ln” and the common 
logarithm as “log”. Doing this, we have (mind that you keep 

track of the signs!) 693.0=
RC
t

. 

From here it’s just a matter of a smidge of multiplication 
and substituting in the right numbers. 

. sFRCt 484 106.3104.1107.3693.0693.0 −− ×=××Ω××==



2. Now consider the circuit below. Initially, S1 is closed and S2 is left open. 
After a long time, S1 is opened and S2 is immediately closed. (This is 
usually accomplished by a single switch just “shunting” to a different 
path.) Make a sketch of the charge held by the capacitor as a function of 
time after S2 is closed. Use the values for R and C from the previous 
problem. Be sure to indicate on your sketch the time at which the charge 

will be at the 
e
1  level. If E=3V, after 300 microseconds, what will be the 

charge remaining on the capacitor (this will be an actual value, not just a 
fraction)? 

Again, let’s discuss some Physics first. The capacitor is 
charged, as in the previous problem. The charging takes place 
over a “long time.” What is a long time? That’s a relative 
statement. In a problem like this, the timescale is set for 
us by the RC time constant, τ. Thus, “long” would be some 
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time that is very large compared to . After 
this long time, we can consider the charging of the capacitor 
to have stopped. Has it actually stopped? No! But we can 
always wait until the rate of charging has gotten smaller 
than any limit we can think of. So this is an approximation 
that is infinitely good—as long as we’re patient enough. When 
this limit is reached the charge on the capacitor will be 
such that the potential across it is equal to the potential 
which charged it in the first place. This is 

sRC 41018.5 −×==τ

ECV == CQ . 

Now, once the charging potential is removed and the 
capacitor sits in a circuit with the resistor only, the 
charge will begin to flow out of it. The potential difference 
across the resistor, initially, will just be E, so the 
current at the instant the switches are thrown will be that 
determined by Ohm’s law using this as the potential. However, 
as the charge on the capacitor goes away, the potential will 
drop and the rate of current flow will diminish. The charge 
remaining on the capacitor at any time (taking the zero of 
time to be the instant the switches are thrown) will be given 

by RC
t

eQQ
−

= 0 . In this case, ECQ =0 . However, it is important 
to realize that we can pick any instant after the switches 
are thrown and the same equation will hold. All that has to 
change is the , which will be whatever charge the capacitor 
happens to have at that instant. This is a remarkable 
property of the exponential function! 
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After 1 ms, the charge will be 
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will be reached after 0.518 ms, as shown. 

(I misspoke in discussion with some of you, for which I 
apologize. I misremembered the numbers I had assigned and 
thought that I’d assigned a time much larger than tau.) 



3. A 56 mF capacitor is attached to a 3 V battery for a very long time. The 
battery is then removed and the capacitor is used to power a small 
lightbulb. It is known that the bulb dissipates 1 W when driven by a 1.5 V 
battery. How long after the bulb is attached to the capacitor will it be 
before the power dissipated by the bulb falls to ½ of the power it 
dissipates immediately after the capacitor is attached to it? Assume that 
the resistance of the bulb is not affected by its temperature. 
We start out the same as the previous problem: A 

capacitor is “fully” charged with a battery. (Note that the 
limit on charging is a property as much of the battery as of 
the capacitor. If we “fully” charged this capacitor with a 3V 
battery and then hooked it up to a 12V battery, it would 
certainly add to its charge. A capacitor in a system is fully 
charged when the potential due to the charge on the capacitor 
is equal to the EMF of the source.) The capacitor is then 
discharged through a lightbulb—just like in the activity you 
did in class. All we really need to do is find a few simple 
numbers first. 

We are not told the resistance of the lightbulb. We will 
need that value in order to determine the rate at which the 
capacitor discharges. But we are told that the bulb 
dissipates 1W when driven by a 1.5V battery. That tells us 
everything we really need. Since we know that the dissipated 

power is related to potential change and resistance by 
R
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we can solve for the resistance and get Ω=== 25.2
1
25.2 22
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We are now ready to start working on the problem, per se. 
(Personally, I would have waited until the very end to find 
the resistance. But it really doesn’t matter—solve for it 
whenever you want and just stick the number aside until you 
need it.) Notice that this problem looks like problem #2 in 
this assignment except for the fact that we want the time at 
which the dissipated power has dropped to ½ its initial 
value. We don’t have a “formula” for power as a function of 
time—whatever shall we do? Well, just because you don’t have 
an equation for something yet doesn’t mean that one can’t be 
found. 

We want to find an equation for the power dissipated as a 
function of time. We have three equations relating power to 

potential, current, and resistance: RI
R

VVIP 2
2

=== . Any one of 

these is equally good. I’ll work with the first one, but 
either of the others will yield the same result with 
approximately the same level of effort. We know that both V  
and I  vary with time exponentially. It is tempting to just 



slap an τ
t

e
−
 after a P and call it a day. But that’s not 

correct. We have the equations ( ) τ
t

eVtV
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= 0  and ( ) τ
t

eItI
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= 0 . (I 
encountered some confusion, while speaking with students, 
over the meaning of things like ( ) somethingtV = . The time in the 
parenthesis is just a means of communicating that the 
potential is a function of time. That is, the potential 
varies with time. You’re not supposed to do anything with the 
t, just note that it is one of the independent variables in 
the problem—in this case, it is the sole independent 
variable, but there may be several in any particular problem. 
We want to communicate what the independent variables are to 
someone reading the equations. That’s all.) We substitute 
these into our equation for power and get 
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×== 00)()()( . Recalling that when we multiply 
exponentiated quantities with the same base, we add 

exponents, this allows us to write τττ
ttt
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=×= . And 
since the power dissipated at the very instant the current 
begins flowing through the bulb is given by , we have 000 IVP =

τ
t

ePtP
2
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= . Note that the power decays twice as fast as either 
the potential or the current! 

Using this equation, we now apply the same technique as 

in problem #2. We have 
2
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e  in this case, which gives 
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 and sRCt 21037.4
2

693.0 −×== , where we have now used the 

resistance found previously. 

4. A 37 mF capacitor is wired in series with a battery and a resistor. It is 
noted that the current passing through the resistor drops to 1/6 of its 
initial value in 500 ms. What is the resistance of the resistor? 
This one should be a piece of cake for you by now. I just 

wanted to give you a bit more practice with exponentials and 

logarithms. As before, we know that ( ) τ
t

eItI
−

= 0 . In this case, 

we know the time and we know ( )tI  at that time. But we don’t 

know τ. No problem, we just have to do a bit of algebra. 
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take the natural logarithm of both sides of the “=” and get 
(once again, being very careful of the sign and remembering 

mst 500=



the rules for dealing with logarithms) ( )6ln=
τ
t

. So ( )6ln
tRC ==τ  

which gives, finally, ( ) Ω=
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5. A 37 mF capacitor is attached to a 12 V battery for a very long time. The 
battery is then removed. The capacitor is then discharged through a 
10 kΩ resistor for 15 seconds. Then, the 10 kΩ resistor is replaced by a 
130 Ω resistor. After two seconds, what is the potential across the 
resistor? What is the current through it? What is the charge remaining on 
the capacitor? 
Step by step—that’s the only way to deal with something 

like this. One piece at a time. 

We once again are confronted with a capacitor that is 
initially “fully” charged—this time with a 12V battery. It is 
then partially discharged through a resistor. While there is 
still substantial charge left on it (and the fact that the 
remaining charge is “substantial” really isn’t of any concern 
to us—everything we do next would be the same if it were 
insignificant, we just would be less likely to be interested 
in the answer), it is hooked up to a different resistor. No 
big deal. Let’s just go step by step. 

The initial potential on the capacitor is the same as 
that of the battery: 12V. This means that it will have a 
charge given by the capacitor formula 

. CVmFCVQ 444.012370 =×==

After 15 seconds hooked up to the first resistor, the 
potential on the capacitor will be given by 

( ) VeVeVtV F
st

5.1112 000,10037.0
15

0 =×== Ω×
−−

τ  while the charge remaining on 

it will be given by ( ) CeCeQtQ F
st

426.0444.0 000,10037.0
15

0 =×== Ω×
−−

τ . 

The capacitor is then hooked up to a different resistor. 
What’s key here is that neither the capacitor nor the 
resistor knows how the capacitor got into the state that it’s 
in at this point. Everything behaves as thought this is the 
beginning. Remember that there really isn’t any such thing as 
a fully charged capacitor (until the potential causes the 
internal electric field to exceed the dielectric strength 
within the gap, of course). “Fully charged” simply has to do 
with the relationship of the battery and the capacitor. Once 
the battery is out of the picture, the capacitor simply has 
on it whatever charge it happens to have. So we approach this 
step exactly the way we did the previous step, just using the 

new numbers. We have ( ) VeVeVtV F
st

6.75.11 130037.0
2

1 =×== Ω×
−−

τ  and 



( ) CeCeQtQ F
st

281.0426.0 130037.0
2

1 =×== Ω×
−−

τ . To find the current through 
the resistor, we could use the current-decay equation, 

( ) τ
t

eItI
−

= 0 , but that would be way more work than is necessary: 
We’ve already found the revised potential, so we can simply 
use Ohm’s law with the new potential. This gives 

.108.5
130

6.7 2 AV
R
VI −×=

Ω
==  (Be sure you understand why this can be 

done. If necessary, use the current-decay formula to convince 
yourself that it is true.) 

6. Write down, in words, Ampere’s Law. 
Qualitatively first: Ampere’s law states that the sum of 

the magnetic field around any closed path times the length of 
the path, considering only the component of the field in the 
direction parallel to the path at each point, is equal to the 
total current (times a constant) passing through a surface of 
any size or shape that has the closed path as its edge. 

Stated mathematically: ∑ =∆ ILB 0µ . 

(Notice how simple it is to say this in an equation and 
how hard it is to say it in English! Some concepts require 
just the right language to be stated efficiently.) 

Stated operationally: If you have any combination of 
currents in a region of space, create a closed path (a “loop” 
of any shape you like, as long as it’s closed) and a 
“membrane” with that loop as its edge. Add up the currents 
passing through the “membrane,” being careful to include 
positive signs for currents flowing “into” the membrane and 
negative signs for currents flowing “out of” the membrane. 
This will be a scalar quantity. Next, for each segment along 
the closed loop, find the component of the magnetic field 
parallel to the segment. Multiply the field component you’ve 
just found by the length of the segments and add all the 
products together for the full loop. The resulting number 
will be equal to the current sum you did previously. 

It is very important to note that this can not be done as 
described without calculus except for a very few cases of 
very high symmetry. Notably, these include: A very long 
straight wire, a solenoid, and a toroid. We did the first two 
of these in class. 

 

 


