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Homework Assignment V 
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1. Recall that the definition of the dipole moment p  is . This is 

obtained by having a charge of 
Qdp ≡

Q+  and a charge of Q−  separated by 
a distance . (Note that in chemistry the dipole moment is called µ .) 
A molecule of sodium chloride has a dipole moment of 

. Consider the charges giving rise to the dipole 
moment of this molecule to be the charge on the proton and 
electron, respectively. 

d

metersCoulomb ⋅× −29103

a. If the axis (the line connecting the two atoms) of such a 
molecule makes an angle of 1.1 radians with respect to an 

electric field of x
meter
VoltsE ˆ101 5×=

v
, as shown, what is the total 

torque on the molecule? 
b. What is the angular acceleration of such a molecule in such a 

field at the stated angle? 

Okay, I’m a real stinker for giving you this one! 
But I’m not the least bit sorry. I wanted to drive 
home the fact that this subject is a whole. The fact 
that we break it into semesters and then further break 
it into segments is an organizational necessity and is 
not a fundamental feature of the subject. Therefore, 
you do not get to forget! Last semester’s work is 
still a component of this semester’s subject and I 
feel free to include topics from 206a on homework 
assignments and exams! In this case, this problem is 
essentially identical to Problem #3 on Assignment #10 
in Physics 206a from last Spring. You might want to 

θ 

E 



review the solution to that problem as well as several 
others on that assignment for more insight into the 
solution to this problem. 

So, dredging up the depths of our memories from the 
previous semester (or simply looking it up in the 
book), we recall that torque is defined as Fd

vvv ×=τ  
where  is the force acting at a point and  is the 
displacement vector from a point in the universe which 
we are free to choose (let’s call it the “origin” for 
this) to the place where the force acts. Now, we have 
huge freedom in choosing the origin. However, certain 
choices will make our lives very much easier: Since we 
are interested in the total torque on this system, we 
will have to add the torques resulting from two 
different forces—one on each of the two charged 
objects in the dipole. By placing the origin on one of 
the charges, the effect of that charge on the torque 
will vanish. Another possible choice of origin that 
might make sense is the midpoint between the charges. 
(As an aside, a dipole is defined as being the two 
charges of the same size but opposite sign separated 
by some distance. Of course, if the charges aren’t of 
the same size there is still a torque. It turns out 
[insert heavy duty math here] that in that case we do 
not have the option of where to put the origin. That’s 
way beyond this class, but it’s worth mentioning.) But 
that point is still more work. So let’s put the origin 
on one of the two charges. 

F
v

d
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The torque is the product of the component of the 
force perpendicular to the “moment arm,” that is the 
line connecting the two charges in this case, and the 
moment arm’s length. (Alternatively, and totally 
equivalently, we can say that the torque is the 
product of the force and the component of the line 
connecting the point at which the force acts that is 
perpendicular to the force—this component is called 
the “moment arm.”) Thus, we have τθτ ˆ)sin(dFFd =×=

vvv
, 

where I have included the unit vector τ̂  to remind us 
that the torque is a vector quantity. For convenience, 
let’s neglect the direction for now and just find the 
magnitude of the torque—we can do this as long as we 
don’t fall into the trap of believing that the 
direction is of secondary importance. It is not, but 
we are not concerned with it at this time. So we can 



say )sin(θτ dF= . We are now left with the challenge of 
finding the moment arm and the force. 

Many people came to me concerned that I had not 
given the length of the dipole. Of course, since I 
told you the charges you can figure out the length. 
However, this is an unnecessary step, as you’ll see in 
a moment. Once again we have a situation in which 
doing the problem with symbols and saving any 
numerical substitutions for the very end can save 
valuable time. 

Since the force experienced by a charge immersed in 
an external electric field is given by FQE

vv
= , we can 

immediately say (again, neglecting the direction of 
the force since we’re neglecting the direction of the 
torque for now) )sin()sin( θθτ dQEdF == . But note that 

 so we have pdQ = )sin()sin( θθτ pEdQE == . We didn’t need 
the length of the molecule at all (in this part of the 
problem)! 

Putting these together, we have 
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Now, to complete this problem we’ll need to find the 
direction of the torque. Once again, I refer you to 
the homework solutions from last semester for details. 
We use the “right hand rule” applied to the 
displacement vector and the force. This gives us a 
direction of . I won’t require that the direction be 
specified for credit on this assignment, but in all 
future problems in which torque is calculated 
direction must be specified unless I explicitly state 
otherwise. 

ẑ−

Now, to solve for the angular acceleration we use 
the rotational analog of Newton’s second law ατ vv I= . 
For this we’ll need the moment of inertia, I . In order 
to find the moment of inertia, we need to specify the 
geometry of the molecule and the point about which the 
molecule is to rotate. I didn’t really give you enough 
information to calculate this unambiguously, so any 
reasonable choice of shapes and points will do. I’ll 
treat the molecule as a “dumbbell” and use the 
midpoint as the center of rotation. Technically, we 



should use the center of mass for the best possible 
answer. The difference will be small. Another totally 
reasonable geometry would be to consider the molecule 
to be a solid rod. If you used that geometry, your 
answer will be very similar to what I find below. 

We’ll need the length of the molecule at this point. 
I gave you the total dipole moment of NaCl: 

. Since we are taking the 
charge to be that of the electron or proton, 

. Thus, we have 

metersCoulombQdp ⋅×=≡ −29103

CQ 19106.1 −×=
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⋅×
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(The distance  is known as an “angstrom” 
in an old-fashion system of units. It is abbreviated 
by the symbol Å. This unit is no longer considered 
standard, but you may encounter it from time to time, 
especially in older works.) 

meters10101 −×

The moment of inertia for a point-mass a distance r 
from a pivot point is . We’ll have a contribution 
for each of the masses in this, so our total moment of 

inertia will be 

2mrI =

( )
4

2dmmI ClNa ×+= . (The 4 in the 

denominator comes from the fact that we had to divide 
the length of the molecule by 2 since we’re spinning 
around the midpoint and then we squared the resulting 
length.) Now, the mass of sodium is 

kg
amu
kgamumNa

2627 1082.31066.123 −− ×=××=  while that for 

chlorine is kg
amu
kgamumCl

2627 1089.51066.15.35 −− ×=××= . Thus, 

we have 
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Solving for the angular acceleration, we have 
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. (Once again, you 

won’t be penalized for leaving off the direction this 



time.) That’s a ferocious acceleration! This thing is 
really going to start spinning! 

2. A proton in a constant electric field of x
meter
VoltsE ˆ101 5×=

v
 is moved 3 

cm at an angle of 0.9 radians relative to the field, as shown. How 
much work is done in the motion? 

This is a real piece of cake! Recall that the force 
on a charged object in an electric field is just qEF

vv
= . 

The work done moving an object is , 
that is, in words, the work is the distance an object 
moves times the component of the force acting on the 
object parallel to the direction of the motion. This 
last part is crucial! The angle, θ, is the angle made 
by the force vector and the displacement vector. 
Putting these two together, we have, in this case 

)cos(θFddFW =⋅=
vv

Joules
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But there’s another way to do this: Instead of 
looking at the force, let’s look at the potential. The 
potential difference between two points in a constant 
electric field (careful! this is a special case) is 

)cos(θEdV =∆ . Thus, the potential difference between the 
starting and ending point of the proton is 

Volts

radm
meter
VoltsEdV

3

5

1086.1

)9.0cos(03.0101)cos(

×=

×××==∆ θ
 

Starting position 

End position 
θ 

E 



The change in potential energy of an object with a 
charge q that changes its potential by  is just V∆

)cos(θqEdVqU E =∆=∆ . Identical to what we got above. 

3. An electron is released from rest very far away from a proton whose 
position is fixed. When the electron is 1 mm away from the proton, 
what is its speed? 

The concept underlying this question is very 
important: We pick the zero point of electrical 
potential (and, hence, of electrical potential energy) 
to be at a point infinitely far away from any point of 
interest. Thus, the total potential energy of an 
object is the difference between the object’s 
potential energy at infinity (zero) and the object’s 
potential energy at the point under consideration. For 
this to be useful, we must actually know what that 
difference is. Fortunately, we do know that for 
certain, simple geometries. In general, you’d have to 
start by figuring this out. But in this case, the 
thing which is creating the potential is a proton. The 
potential due to a point charge a distance r from that 

point charge is 
r
qkV = . To find the potential energy 

(again, this is relative to a zero at infinity) of a 
charged object, we just multiply the potential at the 
location where the object is by the charge of that 

object Q
r
qkVQU E == , where Q is the charge of the other 

object. (I know this gets confusing. I like to think 
of it as a source and a target: The source charge 
creates the potential. The target charge experiences 
the potential. In this case, the proton is the source 
and the electron is the target.) Here, I am using  
to represent the potential energy of the object. 

EU

It is very important to understand the difference 
between a potential and a potential energy: A point in 
space has a potential. An object placed at that point 
has a potential energy. Gravity provides a good 
example of a system in which this can be discussed. 
The (gravitational) potential energy of an object is 
related to its height above ground (assuming that 
we’ve taken the potential energy of the object to be 0 
on the ground) and its mass. We have mghEP =.. . There is 
a (gravitational) potential in this system as well, 
this depends on the height only, ghV = . Any object 



placed at a height h will be at the same potential—be 
it a feather or an anvil. But the potential energy of 
an object at that height will depend on its mass. 

Now, energy is conserved in this system. What that 
means is that at all times the total energy of the 
system will be a constant. There are only two places 
where energy can hide in this situation: Kinetic 
energy and electrical potential energy. So, we have 

 If we can figure out what that constant 
is at any point, we know what it is everywhere. Do we 
know it at some point? Yup: At infinity. Now, infinity 
is a concept, not a quantity that can be worked with. 
But saying “very far away” is a way of saying “close 
enough to being infinitely far that the difference 
doesn’t matter.” To a mathematician, this is 
blasphemy. To a Physicist, it’s our daily bread. 

... constUEK E =+

So, what is the total energy when the electron is at 
infinity? Well, the potential energy, by definition, 
is zero. Since we’re told the electron is “released,” 
we know (or are at least safe assuming) that its 
initial speed is zero, so its kinetic energy is also 
zero at infinity. Thus, we can say, in this case 

 everywhere. A smidge of algebra gives us 
 everywhere. So all we need to do is find the 

potential energy at any point and we’ll know the 
kinetic energy. 

0.. =+ EUEK

EUEK −=..

Well, at a distance of 1 mm from the proton, the 
electron’s potential energy is 
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signs on the charges! Keeping the signs in this case 
is very important. Working through the numbers, we 

have JQ
r
qkU E

25103.2 −×−== . This gives 

JmvEK 252
2
1 103.2.. −×== . 

From here, it’s just “plug and chug” to get the 

speed: 
s
m

kg
Jv 2

31

25

1011.7
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103.22
×=

×
××

= −

−

. 



4. Electrons in the “gun” of a television set are thermionically emitted 
from a filament. They are accelerated through a potential difference 
of 4 kV. Neglecting their initial speed, what speed will the electrons 
have after the acceleration? 

Piece of cake! Again, energy is conserved. We don’t 
even need to consider the potential energy at infinity 
because we’re told that the electrons travel through a 
potential difference. It’s not the potential energy 
that matters but the change in potential energy. Any 
change in potential energy must show up in an 
identical (save for a sign) change in kinetic energy. 
Thus, we have ( ) ..EKQVU E ∆−=∆=∆  This gives 

( ) ( ) JCVQVU E
16193 104.6106.1104 −− ×−=×−××=∆=∆  (recall that 

C
JV 11 = ). And, as in the previous problem, we just set 

this equal to the kinetic energy JmvEK 162
2
1 104.6.. −×==  

which gives 
s
m

kg
Jv 7

31

16

107.3
1011.9

104.62
×=

×
××

= −

−

. 

As an aside: It happens so often that we have a 
certain number of electrons or protons (recall that 
these have the same charge except for a sign) 
undergoing an acceleration across a particular number 
of volts that we’ve created a special unit of energy. 
One “electron volt,” abbreviated “eV,” is the energy 
change experienced by an electron or proton moving 
through a potential difference of 1 volt. This is 

. This is a very natural unit for doing 
Chemistry or many sorts of Physics. In the case of 
this problem, we’d say “the electrons’ energy changed 
by .” 

JeV 19106.11 −×=

keV4



5. Two charges lie on the x axis, as shown. The one on the right is -0.9 
C and the one on the left is 0.7 C. They are separated by 37 cm. What 
is the electric potential at the following points: 

a. 10 cm to the right of the charge on the right? 
b. 10 cm to the left of the charge on the left? 
c. The point on the x axis midway between the two charges? 
d. The point 12 cm in the  direction directly “above” the 

midpoint between the charges? 
ŷ

This is much easier than its brother in the previous 
assignment! Potential is a scalar. While it has a 
sign, that sign comes exclusively from the sign of the 
charge creating the potential—the distance is just a 
distance, not a displacement, so it’s “unsigned” 
(i.e., always positive). When we have multiple charges 
creating the potential at a point, we just add each of 
their contributions, one at a time. The potential for 

each charge will be 
n

n
n r

qkV =  where I’ve used the 

subscript n to keep track of the different charges—
it’s just a label and has no mathematical meaning 
other than to “name” the charges. 

In this case, we have two charges. I’ll do each of 
the four points we’re considering in order. Let’s call 
the –0.9 C charge  and the 0.7 C charge .: 1q 2q

d 

b a 
.7 C c -.9 C

a) Here, cmr 101 =  and cmr 472 =  so 

V
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b) Here, cmr 471 =  and cmr 102 =  so 
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c) Here, cmrr 5.1821 ==  so 
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d) It’s clear that 21 rr =  again in this case, but we 
must do a little work to find what that 
distance is. Just apply the theorem of 

Pythagoras to get ( ) ( ) mmmrr 22.185.12. 22
21 =+==  

Thus V
m
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m
C

C
mN

r
q

r
qkV 9

2

2
9

2

2

1

1 1018.8
22.
7.

22.
9.109 ×−=

⎭
⎬
⎫

⎩
⎨
⎧

+
−⋅

×=
⎭
⎬
⎫

⎩
⎨
⎧

+=  

6. Three charges are in the configuration shown below. 
a. What is the potential energy strored in the configuration? 
b. How much work would be required to move a charge of 0.3 C 

to the position marked “x” from a large distance away? 
c. Assume the 0.3 C charge has a mass of 5 grams. With what 

speed would it have to be thrown to get it to the position 
marked “x” if thrown from a large distance away? 

The potential energy stored in the configuration is 
just the sum of the potential energies needed to add 
each of the charges to it. Just imagine building this 
from scratch—we move each charge into position from 
infinity, where its potential energy is zero. Moving 
the first charge into place takes no work. Moving the 
second charge into place requires that we fight the 
force between it and the first charge. Moving the 
third charge into place actually gets some work back 
because both of the first two are pulling on it so we 
don’t need to add energy to the system to get it into 
place. In fact, we need to extract energy from the 
system if we want the third charge to arrive with 

.7 C
x 

7 cm 11 cm

-.9 C

13 cm 

.9 C



negligible speed. So the work done in that case is 
negative and includes contributions from each of the 
other two charges. 

To do this systematically, let’s introduce a little 
notation: I’ll call  the total energy resulting from 

adding charge n to the system. I’ll call  the 
energy resulting from the interaction between charge n 
and charge m. I hope this becomes clear from the 
context below. Mathematically, we have 
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Thus, the total energy will be given by 

323121321 EEEEEEE UUUUUUU ++=++=  

(Be careful! Resist the urge to double-count.) From 
here, it’s just plug and chug, again, substituting the 

correct values of r and q into 
nm

mn
Enm r

qqkU =  (where, 

again, I’m using the subscripts to indicate charge n 
or charge m and the distance between them). This gives 
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Next, we are asked to add a fourth charge to the 
setup. Since we approached the first three 
systematically, to extend that system to the fourth 
charge is a piece of cake. We have 
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Since we’ve already calculated the first three of 
these and added them together, all we need to do is 
find the fourth one in the progression. Using the same 
technique as previously, we have 
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We could continue this technique forever. Each 
additional charge interacts with all the charges that 
are already there. The order in which we choose to 
assemble the system doesn’t matter (try this for 
yourself!), so, once we’re done, we can talk about the 
system having some total energy stored in it just by 
dint of it existing in the first place. 

Part (c) just applies what you already know about 
conservation of energy: In a system without 
dissipative forces, all the energy is conserved 
although it can be in different forms. In particular, 
in this case, our energy can be either kinetic energy 
or electrical potential energy (we’ll just call it 
“potential energy” for short since there’s no other 
kind in this system). Mathematically, we write this as 

. Since the constant is just that, 
constant, if we can figure out what it is at any one 
point in the system we will know it for all points. 

constantEKU E =+ ..

Now, here I have to confess to having made a blunder 
in writing this question: I slipped a sign! (Gee, 
that’s never happened before...) When I originally 
calculated this, I got a positive potential. I do 
apologize for any confusion caused by this error. 

Let’s run with it, though. First, let’s deal with 
the situation that you do have. Since the potential 
energy of this charge is negative, work was done on it 
by the other charges. If we released it from rest from 
a long distance away, it would accelerate up to some 
speed and continue to get closer. We could figure out 
where it would stop with a bit of work—somewhere close 
to the positive charges. This would be basically the 
same problem as #3 above. 



Now, let’s rework this. Assume that I had gotten a 
positive value for the energy. Let’s just flip the 
sign on what we did get and take . (That’s 
what we would have gotten if the new object’s charge 
were –0.3 C.) This means that we had to do this much 
work on the system to push the charge into position. 

JU E
101065.1 ×=

Now, if we threw the charge, starting at infinity, 
all of its energy would be kinetic. When it arrived at 
the final point, we’d want it to come to a stop, so 
all of its energy would be potential energy. At the 
beginning we’d have constantEK begin =..  and  and 

the constant is the same thing. So we have . 
Well, we’ve just calculated , so we just set this 
equal to 

constantU endE =

endEbegin UEK =..

endEU
2

2
1.. mvEK =  and solve for the speed. This gives 

s
m

kg
Jv 3

3

10

1057.2
105

1065.12
×=

×
××
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As a final step, let’s imagine the Physics of this: 
We’re standing very far away from the original set of 
three charges. They’re just sitting there. We’re 
holding another charge (as mentioned above, its sign 
would have to be negative to give the energy we used 
here). We toss it at the speed shown above toward the 
charges that are already sitting there. As it gets 
closer, the other charges push on it, repelling it and 
slowing it down. It slows down more and more as it 
gets closer. As it gets closer, the repulsive force 
also gets bigger, increasing the rate at which it 
slows down. But we’ve picked the speed just right so 
that when it hits the point marked X it is at a dead 
stop. Of course, it doesn’t end there. There’s still a 
net repulsive force on the object and it begins to fly 
back toward us. When it gets back to us, the repulsive 
force is zero, but it’s moving back at its original 
speed when it smacks us right in the face. Maybe 
throwing things at repulsive forces isn’t such a good 
idea, after all! 



7. Calculate the total capacitance of a pair of parallel plates separated 
by air. Consider the plates to be circular with a radius of 1 cm. Take 
the separation between them to be 1/2 mm. 
The only judgment call here is whether it’s alright to 

use the dielectric constant for vacuum in place of air. 
The two vary by only a fraction of a percent, so, yes, go 
ahead and pretend it’s vacuum—it makes life a lot easier! 

After that, this is really just plug and chug. We use 
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distance between them, and 

A d

0ε  is the “permittivity of 
free space.” This has a number, which you can memorize: 
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This might come in handy. It certainly will help you to 
remember the units and order of magnitude of 0ε . 

We’ll need to do a quick calculation to find the area 
of the plates: Since they are circular with a radius of 1 

cm, the area is ( ) 2422 101.301. mmrA −×=×== ππ  Using this, we 
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Note that I’ve introduced a new unit: The “farad” 
abbreviated “F”. This is the unit of capacitance in the 
SI system. The value that we got is in the picofarad 
range. This seems tiny, but it’s a not-unusual value. A 
farad is huge! Picofarads are often called “puffs” in 
part because their abbreviation is “pF” and in part 
because they are rather small. 

Note that the formula we used is good for parallel-
plates only! A different geometry for the conductors 
would lead to a different formula for the capacitance. Be 
careful! 

 

Problems #8 and #9 have been moved to the next assignment. 


