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Homework Assignment IV 
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1. If a refrigerator has a coefficient of performance (“efficiency”) of 2.5, 
how long will it take your refrigerator to cool 1L  of boiling water to 
one degree above freezing if the refrigerator draws 1 kW? 

We must first remember the definition of the 

coefficient of performance of a refrigerator: 
W
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=β  where 

 is the energy removed from the contents of the 
refrigerator and W is the work done by the refrigerator 
in accomplishing this task. Since the work done by the 
refrigerator is the power it draws (1 kW) multiplied by 
the time over which it draws this (using the definition 

of power, 
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To cool 1L (1 kg) of water from 100° C to 1° C 

requires the removal of JK
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Clearly there’s something wrong here: The numbers I 
gave you are not unrealistic. But we know that it would 
take a whole lot more than the ~3 minutes found here to 
accomplish the cooling we’ve described. So what’s wrong? 
Well, your refrigerator doesn’t cool the water directly. 
Your refrigerator must cool some coils filled with 
refrigerant first. It then blows air from within the 
refrigerator over those coils to fill the refrigerator 
with cold air. The air then cools the water via a 
combination of convection and conduction (and a little 
bit of radiation, but not much). So our example made a 
false assumption: That refrigerators cool things put into 
them directly. Refrigerators cool the things put into 
them indirectly, so the process is much more complex than 
what we’ve laid out here. 



2. You see advertised a motor that claims that for every Joule of energy 
it gets out of burning fuel at , given the world average 
temperature of 15 °C, it can on average do 0.85 Joules of work. Is 
such a motor feasible? 

700 °C

The maximum amount of work that can be gotten from 
any heat engine is given by QW ε=  where  is the energy 
derived from the engine and 

Q
ε  is the efficiency of the 

process. But the maximum efficiency is given by 
H
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where  and  are the temperature of the hottest 
segment of the engine’s cycle and the temperature of the 
environment, respectively. 

HT CT

In the system presented, the purported engine’s 
efficiency is 85.0=ε . But the maximum efficiency such a 
motor can have, given the specifications cited, is 
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each of the temperatures given to convert them to 
absolute (Kelvin) temperatures. So the best that our 
engine can do is about a 70% efficiency—well below the 
85% claimed. This motor is clearly not feasible. 

3. Two charged objects are separated by 1 meter. The net force between 
them is  and is attractive. The net charge on one of 
the objects is . What is the other charge? 

Newtons102 3−×
C1011.7 4−×

Here we use Coulomb’s law directly: 2
21

r
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told the size of the force and that it is attractive. 
Since it is attractive, we can immediately conclude 
that the signs on the two charges are opposite. The 
one charge (let’s call it ) is given to be positive 

with a size of . Thus the other charge ( 2 ) 
must be negative. Solving for the size is just a 

simple piece of algebra, giving 

1q
C1011.7 4−× q

1

2

2 kq
Frq = . All that’s 
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(Notice the minus sign, which I inserted by hand 
based on knowledge of the sign of the final charge.) 

4. Consider again the two charges in the previous problem. If the 
distance between the charges is doubled, what then will be the net 
force between them? 
No direct work is necessary here: If the distance 

between the charges is doubled, the force will go down 
by a factor of ¼. Since the original force is 

, this means Newtons102 3−× NewtonsNewtonsFfinal
4
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5. Object A has charge of 1.7 C and object B has a charge of 3.1 C. The 
objects are separated by 2.9 meters. A line drawn between the two 
makes an angle of 20° relative to the horizontal, as shown. 
Expressed as a vector, what is the force experienced by object B due 
to object A? 

We now introduce the vector nature of Coulomb’s law. 
Recall the statement of Coulomb’s law: “The force 
between two point charges separated by a distance r 

will be given by 2
21

r
qqkF =  and will be directed along 

the line connecting the two charges.” Let’s begin by 
calculating the size of the force. 

Directly plugging in the numbers for the charges and 
their separation, we get 
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how huge this is. A coulomb is a whopping big charge. 
It would be very rare to find an object that actually 
had a net charge on the order of a Coulomb.) 

Now for the hard part (for those who are rusty 
working with vectors). We must represent this as a 

A

B

20°

 



vector. Let’s begin by making a little sketch with our 
coordinate system in place: 

Here I’ve included the force exerted on B by A. 
Since this force is in the same direction as the line 
connecting A and B, the x and y components of the 
force will be in the same ratio to the total force as 
the legs of the triangle formed by A and B, as shown. 
Now we can do just a tiny bit of trigonometry to find 

the answer. Calling the line connecting A and B AB  and 
the perpendicular legs of the triangle parallel to the 

x and y axes xAB  and yAB  respectively (the blue and 

red lines in the picture), we can say 
AB
AB y=°)20sin(  and 

AB
AB x=°)20cos( . Extending this to the triangle formed by 

the force and its components, we can say 
F
Fy=°)20sin(  and 

F
Fx=°)20cos( . Thus, )20cos( °= FFx  and )20sin( °= FFy . 

Combining all of the above, we can write 
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6. Objects A, B, and C sit at the corners of a 45° right triangle as shown. 
B and C each have a charge of 0.61 C while object A has a charge of 
—0.7 C. The distance between A and C (which is the same as the 
distance between A and B) is 13 mm. What is the net force 
(expressed as a vector!) experienced by object A? 

Here we follow the same procedure as before (I won’t 
do it in quite such gory detail, however). But there’s 
a twist: Now, we have two charges each exerting forces 
on the “target” charge. This is no problem: We simply 
add the forces, remembering to do so vectorially. 
Since each of the forces are exerted along the lines 
connecting the “source” charge to the “target” charge 
(I’m using the quotes because Newton’s third law tells 
us that there is no real difference between these 
roles, they just help us keep things clear in our 
heads) and since those lines make a right angle with 
respect to each other, this addition is particularly 
easy, in this case. (Note that the fact that I placed 
those lines along the conventional coordinate axes is 
irrelevant: Let’s say that I didn’t do this but that 
the lines were still perpendicular to each other. You 
would just construct a pair of coordinate axes 
parallel to the lines. As long as they make a right 
angle, you can use them as the basis of a coordinate 
system without any problem. Don’t fall into the trap 
of believing that your x and y [and z] axes always 
have to be oriented in the same directions!) 

Calling the forces of B on A and C on A  and BAF
v

CAF
v
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and 
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Therefore, the total force on A is 

B

A
C

 



)ˆˆ(103.2 13 yxNewtonsFFF BACAA +×=+=
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7. Consider once again the charge configuration described in problem 
#6. What is the total force experienced by object C? What is the total 
force experienced by object B? 
Now things are getting a bit messy! The key here is 

to break the problem down into bite-sized pieces. Here’s 
the strategy: Recognize that the total force on each of 
the charges is a sum of two forces. Solve for each of 
the vector components of each of those two forces. Add 
together the x components to find the final x component 
of the total force. Likewise for the y components. 
That’s it. Now let’s do it. 

For object C, we can write BCACC FFF
vvv

+= . Now, from 
Newton’s third law, we can conclude that the force of A 
on C is the opposite of the force of C on A. So we can 

immediately write xNewtons
r
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v
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people prefer to bundle the sign with the unit vector 
and write . This is perfectly acceptable.) Finding 
the force of B on C is a bit more problematic. Without 
going into the level of detail I did in problem #5, we 
use the same procedure we used in that problem. We will 
need to find the magnitude of the force first, however. 
This will be found, once again, using Coulomb’s law. 
First we’ll need to know the distance between the 
charges. Using the Pythagorean theorem, this is 

. (Note that we could take the 
square root, but why? We’re going to use the distance 
squared in our final answer, so there’s no need to waste 
the step.) This gives us 
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Now we can find the components: ( °)= 45sinBCBCx FF  and 

. (Of course, in this case, these are both 
the same. But that isn’t true in general, so let’s not 
take too many shortcuts.) Note that  will act in the 

 direction. And the two forces can be added 
component-wise to give, finally 
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(Note that there are a variety of equally valid ways 
you might write this.) 

For the force on B, all the above methods hold except 
that the forces are in slightly different directions. 
The force on B due to A is in the ŷ−  direction. For the 
force on B due to C, we can just invoke Newton’s third 
law and our solution found previously to write 

BCCB FF
vv

−= . Combining these, we have 
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Just one more note on this question: This problem is 
a nice example of a problem that should be done 
qualitatively before beginning it quantitatively. You 
should get in the habit of thinking through the 
generalities of what you expect the answer to be before 
plunging into the math. When you’re done with the 
precise analysis, look back on your prediction. If the 
two agree, great! If they do not agree, then one of two 
things is happening: Either you made a mistake in the 
math (likely) and your qualitative, intuitive answer 
might be able to guide you to the source of the blunder. 
Or your intuition was faulty, in which case you should 
take the opportunity to “reprogram” yourself. Figure out 
where your intuition went wrong. Did you just overlook 
something when you originally thought about it? Or did 
you actually misunderstand something? Get in the habit 
of doing this with all problems. The ultimate goal of 
your training in Science is to give you a deeper 
understanding of how the universe works. That 
understanding manifests itself in the refinement of your 
intuition. 



8. An electron sits at each of the corners of a square whose side-length 
is 17 µm ( )mm 61011 −×=µ . If no forces other than the Coulomb force 
act on this system, what is the acceleration experienced by the 
electron at the top right corner? 

Let’s apply the advice I gave you in the last 
paragraph of the previous problem: They’re all 
electrons, so the force will be repulsive. By 
symmetry, I expect the resultant to lie directly on 
the diagonal of the square. Now let’s see if this is 
correct and get a quantitative answer for it. 

We have this situation: 

I’ve named each of the charges, for convenience. 
Note that the charge in which we are interested is 
“D.” Now, for a little strategy: We note that the 
problem asks for the acceleration. That should set off 
fireworks in your head by now. There is a force (the 
Coulomb force) and you are asked for the acceleration. 
This should make you instantly think of Newton’s 
second law, amF vv

= . You’ll need the mass, of course, 
but since you were told that the objects were 
electrons, you effectively know this—just look in the 
front cover of your textbook or any of thousands of 
other possible references to find that . 
So the problem really boils down to finding the force. 

kgme
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From here on, it’s just geometry and algebra. We do 
the same thing as in the previous two problems (you do 
see that this is basically the same problem, I hope). 
The total force on D will be CDBDADD FFFF

vvvv
++= . (Get used 

to the notation I’ve used here as I’ll use it often: 
Interaction(something)(something else) means “the effect of 
something else on something. So ADF

v
 means “the force of 

D on A. While DF
v
 would just mean “the force on D 
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without regard to source. As always, if in doubt, 
ask.) 

By reference to the previous problem, we can do BDF
v

 

and CDF
v

 directly: 
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Notice that I’ve put the direction in “by hand” and 
ignored the signs on the charges. Be careful with 
this: I could have left the signs in the charges to 
determine the final direction of these forces (I’d 
still have had to put in that they were in the x or y 
directions by hand—this can be done mathematically, 
but it’s a bit complex) and just “played dumb” about 
not knowing the direction. In that case, my answer 
would simply have told me a final direction and I 
would have had to look at it in the context of the 
diagram to determine whether it’s attractive or 
repulsive. This would have been fine. The big thing to 
remember is to do it either one way or the other—
either by hand or by leaving all the signs in. Don’t 
do it both ways or you’ll get into trouble! 

Likewise, we can do ADF
v

 directly: This is, once 
again, the force between two charges that lie 
separated by the hypotenuse of a right triangle. Even 
better (but don’t get too comfortable with it!), it is 
a 45° right-triangle. This is absolutely identical to 
the BCF

v
 of problem #5 except for the direction. Let’s 

do the size (magnitude) of the force first and then 
break it into its vector components. We have  
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Now, this force is going to be split up into an  
component and a  component. Since the force is 
repulsive, the situation is that shown below: 

x̂
ŷ
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πθ =  (nasty of me not to put it in 

degrees, I know—I’ll break you of that prejudice 

sooner or later!). We can write ⎟
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we have 
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Putting all these pieces together, we have 
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From here, finding the acceleration is just a matter 
of dividing by the mass (almost anticlimactic, isn’t 
it?). This gives 
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This is a huge acceleration due to a pair of very 
small charges a relatively large distance apart! This 
is, in part, because electrons are very light. Mostly, 

FADy

FAD

θ 

FADx



however, it’s simply because the Coulomb force is just 
so very large. 

As a variation you might want to work on on your 
own: Place the charges at the corners of a rectangle 
so that you lose the high level of symmetry we had in 
this problem. This would be a particularly profitable 
exercise for those of you who are still uncomfortable 
with vector decomposition and vector addition. 

9. Consider again the configuration in the previous problem. Replace 
the electron in the top right corner with a proton. What acceleration 
does the proton experience? 

Piece of cake! Since the proton has the exact same 
size charge as the electron but of opposite sign, just 
change the signs on all the forces. This gives 

yxFFFF CDBDADD ˆ1008.1ˆ1008.1 1818 −− ×−×−=++=
vvvv

. Now, for the 
acceleration we must use the mass of the proton 

. This gives kgmp
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10. What is the electric field (expressed as a vector!) resulting from a 
0.78 C charge at a point 0.9 meters from that charge in the  
direction? 

x̂

Let’s recall where the notion of “electric field” 
comes from: The electric field at a point in space is 
the force that a positive, 1 Coulomb charge would 
experience at that point if it were placed there. 

To make this a bit more concrete, consider the force 
exerted on a point charge, let’s call it the “target,” 
by another point charge, let’s call it the “source.” 
The force between the two is given by Coulomb’s law, 

2r
qq

kF targetsource=  where r is the distance between the two 

charges. The direction of this force is along the line 
connecting the two charges and it is either attractive 
or repulsive depending on whether the charges have the 
same or opposite signs. 



We would like to think the interaction between the 
charges doesn’t just “turn on” out of nowhere. The 
source doesn’t know about the existence of the target, 
after all. So we have the sense that the source 
doesn’t exert its force on the target directly, but 
rather it creates a field in all the space around it. 
When a target charge is placed at some point in space, 
the interaction between the charge and the field 
causes the target to experience a force. (Of course, 
the target charge creates a field of its own. It is 
this field that the source charge experiences. IT IS 
ABSOLUTELY ESSENTIAL THAT YOU REMEMBER THAT THE SOURCE 
DOES NOT EXPERIENCE THE FIELD THAT IT CREATES!) Of 
course, Coulomb’s law gives us the size of the force, 
so we associate part of Coulomb’s law with the field: 

(In these equations I have left out the vector 
nature for clarity. This is a dreadful abuse! Both the 
electric field and, of course, the Coulomb force are 
vectors. Do as I say, not as I do: If you leave the 
vector character off of a quantity like this on an 
exam, you will lose all points on that question.) 

Notice that we’d get the exact same result if we 
defined, as above, the field as the force experienced 
by an imaginary 1 Coulomb test charge. 

The biggest source of error I’ve seen on this topic 
is confusing the source with the target charges. The 
source charge creates the field. The target charge 
experiences the force. At the risk of muddying the 
waters, I do need to remind you that the roles of 
target and source are arbitrary! One charge creates a 
field that another one experiences and the other one 
creates a field that the first one experiences. Since 
the size of the field is proportional to the source 
charge and the size of the force is proportional to 
the target charge, the forces work out to be the same, 
as predicted by Coulomb’s law and demanded by Newton’s 
third law.

2r
qq

kF targetsource=

E

targetEqF =



 

In the situation at hand, pictured above, our source 
charge is .78 Coulombs and the distance to the point 
in space, indicated with an “x” in the figure, at 
which we are interested in the field is 0.9 m. So we 

have 
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learn later that the proper unit for this is 
meter
volts

, but 

C
N
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volt 11 = , so we’re fine using this.) 

Now, we’re not done yet: The electric field is a 
vector. We need the direction. The direction is the 
direction of the force that a 1 coulomb positive test 
charge would experience if it were placed at that 
point in space. In this case, the force is repulsive 
so the force would be in the positive  direction. 

This gives, finally, 
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x
C
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v
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0.78 C
x 

0.9 m

11. Consider the charge in the previous problem. What is the electric 
field resulting from that charge at a point 0.9 meters from it in the  
direction? 

ŷ

No work needed here: The distance is the same. The 
charge is the same. All that’s changed is the 
direction. Now, our field points in the positive  

direction. So we have 

ŷ

y
C
NE ˆ107.8 9×=

v
. This seems utterly 

trivial, but it makes all those pictures of radially-
directed arrows make more sense. Make sure you 
understand this! 



12. Two charges lie on the x axis, as shown. The one on the right is -0.9 
C and the one on the left is 0.7 C. They are separated by 37 cm. What 
is the electric field (expressed, as always, as a vector!) at the 
following points: 

a. 10 cm to the right of the charge on the right? 
b. 10 cm to the left of the charge on the left? 
c. The point on the x axis midway between the two charges? 
d. The point 12 cm in the  direction directly “above” the 

midpoint between the charges? 
ŷ

What I really want you to get from this problem is 
that this is nothing more or less than the previous 
two problems once we break it down into bite-sized 
pieces. Electric fields simply add as vectors. That’s 
all there is to it. Just calculate the field due to 
each of the source charges at the various points and 
add the results together. Just remember to add them as 
vectors. 

The magnitude of the fields due to each of the 
charges is (saving the directional aspect for later) 

2r
qkE source= . Let’s make things a bit more convenient and 

call the charge on the left L and the one on the right 

R. We have 2
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r
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r
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Now, point “a” is 10 cm from R and 47 cm from L so 

we have 
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v
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understand the direction of this: If I placed a 
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0.7 C c -0.9 C



positive charge at “a,” it would be attracted to R and 
repelled from L. But the attraction would win both 
because R is larger than L and because R is closer to 
“a.” This is all carried in the negative sign of the 
answer.) 

For “b,” we do the same thing except now R is 47 cm 
from the point in question and L is 10 cm from it. 

This gives 
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Now, here’s a tricky bit: This is also to the left, 
like the previous field. In this case, if we put a 
positive test charge at the point in question, the 
repulsion would win. We can tell this by the fact that 
the answer has a positive sign—a positive sign means 
repulsion. A negative sign means attraction. But, in 
the case of “b,” repulsion means “to the left”—i.e., 
in the , just like before. Be careful! The sign on 
the answer tells you the direction of the field 
relative to the source point—toward or away. Since the 
target point might be in the positive or negative 
direction relative to the source, the sign does not, 
by itself, tell you anything about the direction of 
the field. You need to know the relative positions of 
the source and target. 

x̂−

In the case of “b,” the field is x
C
NEb ˆ1093.5 11×−=

v
. 

For “c,” we do the same thing, but now, the 
direction is going to start being important, so I’m 
going to introduce it at an earlier stage (we could 
have done this for the others without any problem, it 
just would have been a smidge more work). We have 

RcLcc EEE
vvv

+= . Note that I’m just going to treat the 
individual fields as vectors from the beginning. Now, 
charge L would repel a positive test charge at “c” 
while charge R would attract one. Thus both fields 
point to the right. This gives 

( ) ( )
x

C
Nx

m
Ckx

m
CkEEE RcLcc ˆ102.4ˆ

185.
9.ˆ

185.
7. 11

22 ×=+=+=
vvv

. 

Again, make sure you understand where that came 
from! 

Finally, let’s do “d.” As with “c,” we’ll just add 
the fields directly, without passing through the phase 



of not using the directions. But this means finding 
each field as a full vector right from the beginning. 
Let’s do them one at a time. 

The field due to L is repulsive. It will have  and 
 components given by the full magnitude of that field 

times, respectively, the cosine and sine of the angle 
made by the field with the horizontal. This is because 
the overall direction of the field is along the line 
connecting the point with charge L. Thus we have 

x̂
ŷ

( ){ yx
r
qkyExEE
Ld

L
LdyLdxLd ˆ)sin(ˆcosˆˆ

2 θθ +=+= }
v

. Now, before you get 

all freaky because I didn’t tell you the angle (that 
was intentional!), note that you don’t need to know 
the angle! You know the lengths of the sides of the 
triangle (formed by dropping a perpendicular from “d” 
to the horizontal), and that’s enough to find the sine 
and cosine that you need. The x component is 18.5 cm 
and the y component is 12 cm, as stated in the 
problem. The hypotenuse can be found from these using 

the theorem of Pythagoras: ( ) ( ) mmmh 22.185.12. 22 =+= . 

Thus 
22
12)sin( =θ  and 

22
5.18)cos( =θ . Inserting numbers, we 

have 

( ){ }
( )

⎭
⎬
⎫

⎩
⎨
⎧ +××=

⎭
⎬
⎫

⎩
⎨
⎧ +××

⋅
×=+=

yx

yx
m
C

C
mNyx

r
qkE
Ld

L
Ld

ˆ
22
12ˆ

22
5.18103.1

ˆ
22
12ˆ

22
5.18

22.
7.109ˆ)sin(ˆcos

11

22

2
9

2 θθ
v

 

We follow the same procedure for charge R to get 
(noticing that the sine and cosine are going to be the 
same as in the previous problem) 
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Again, be careful with the signs: The force 
experienced by a positive test charge placed at “d” 
would be toward R. This gives the signs on the 
components. I’ve already taken the sign on charge R 
into account with this, so I do not include the minus 
sign in the charge. The systematic way to do this, 



without including things implicitly like I’ve done, 
would be to express each point as a vector and do 
careful vector algebra. This would give the right 
answer without us needing to invoke the concepts of 
“attraction” and “repulsion.” It’s actually a lot 
easier that way, but, I’m sorry to say, the level of 
math needed to do it that way is beyond this course. 
So you really do need to do these problems partly 
graphically to get the directions of the vectors. 
Sorry! 

Finally, to find the total field at “d,” we just add 
each of the components of each of the two fields to 

get 
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Notice the difference in size between the x and y 
components of this. Compare this with the picture of 
the field for an electric dipole shown on page 562 of 
your text. Why is the y component not equal to zero in 
this case while it is zero in the case shown in your 
book? 

13. For each of the points identified in the previous problem, what is 
the acceleration which would be experienced by a proton placed at 
that point? 

Here we just invoke qEF
vv

=  along with amF vv
=  to get 

m
qEa
v

v = . The ratio of the charge on a proton to its mass 

is 
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 which gives 

a) x
s
mx

kg
C

C
Naa ˆ1048.7ˆ1058.91081.7 2

19711 ×−=×××−=v  (If this 

look rather large to you, good! Yes, this is a 
ridiculously high acceleration. With charges on 
the order of a Coulomb and something as light 
as a proton getting accelerated, things are 
going to get outrageous. Note that this still 
could happen. The proton would leave the 
vicinity of the charges very quickly, long 
before the acceleration had a chance to 
increase the speed more than a little. We’ll do 
that problem soon.) 
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