
PHYSICS 206b 
HOMEWORK #3 

SOLUTIONS 
 

 

1. Consider the sample of ideal, monatomic gas in a cylinder sealed by 
a piston shown above. Neglect any pressure of atmosphere outside 
of the cylinder. If the mass is kgm 2.10= , how much heat must flow 
into the gas to raise the mass a distance of 2 cm? What will be the 
temperature of the gas when this is achieved? 

I must apologize for a glaring error in the statement of this problem: I overspecified 
the system! That is, I told you two things about the pressure that are not totally consistent 
with each other. First, I told you that the pressure of the gas is 105 Pa. The, I told you that 
the piston is supporting a mass of 10.2 kg. Either one would have been sufficient. If you 
calculate the pressure needed to support the mass (this was done in Problem #1 of 
Assignment #12 last semester), you find that the numbers are consistent to five 
significant figures, so there was nothing inconsistent in the statement of the problem. But 
it is an error to overspecify things, in general, even if the overspecification is consistent. I 
hope this didn’t cause any confusion! 

This is an “isobaric” process—i.e., the pressure does not change during it. The 
reason for this is that the pressure is provided by the weight of the mass and the area of 
the piston, neither of which change. So we can use the ideal gas law and treat P as a 
constant quantity. This is TNkPV B= . Now, according to the First Law of 
Thermodynamics, the total heat put into the system is equal to the work done by the 
system added to the change in internal energy of the system. This can be written 

. We just need to find the work and the change in internal energy and we’re 
done. Let’s do these one at a time. 

WUQ +∆=

The total work done is going to be precisely that which is necessary to lift the mass 
the prescribed distance. In this case, we have mgdW = , where d is 2 cm, as stated in the 
problem. That was easy. We’ll see in a moment that we’re not done yet, however. 

V=100 cm3

A=10 cm2

P=105 Pa

M



Alternatively, we can calculate the work by saying VPW ∆= . Note that this is 

totally consistent with the statement above: Since 
A

mgP =  and AdV =∆  (see the 

discussion below), . Either statement is equally valid. mgdVP =∆

We now need to find the total change in internal energy. How are we going to do 
that? Well, we weren’t told anything about the temperature, but we know that it 
increases, making the volume expand. If we call the original height of the cylinder h, then 
the original volume is , where A is the area of the piston. Since the cylinder’s 
height increases by an amount d, the final volume is given by 

AhVi =
)( dhAV f += . Thus the 

change in volume is AdVVV if =−=∆ , as stated above. We insert this into the ideal gas 
law. Since the only things that can change are volume and temperature, this gives us 

. That is, the change in pressure causes a proportional change in 
temperature. 

TNkVP B∆=∆

We can solve for the change in temperature to get 
BNk
VPT ∆

=∆ . Of course, we know 

the change in volume. Including this, we have 
BB Nk

PAd
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=∆ . We could stop here. 

But let’s take it one more step, just ‘cause it’s pretty. Recall that the pressure is given by 

A
mgP = . Substituting for this, we have 
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this point, to substitute numbers. But then we’d have to figure out N, which is a real pain. 
My strongest advice to you is to refrain from inserting any numbers until the very end of 
a problem—things frequently work out to our benefit if we keep symbols. This is 
certainly true here, as we’ll see in a moment. 

We know that the change in internal energy of a system is related to its change in 
temperature via the specific heat. For a collection of N atoms in a gas, the total change in 

energy is given by TNkU B∆=∆
2
3 . This was derived last semester. The derivation can 

be found in the pages of your text discussing the Kinetic Theory of Gases. (Note that the 
proportionality factor for between the total energy of a system and the temperature of the 
system is called the “heat capacity.” We didn’t discuss this in class. It’s quite a simple 
concept, though: The “specific heat,” which we discussed, is the proportionality constant 
between the energy of a specific mass of the substance and its temperature—that is, 
usually, per kg or per gram. The heat capacity just scales this by the amount of the 
substance that we actually have. So the heat capacity of N atoms of an ideal gas is 

BNk
2
3 .) So, using the expression for the change in temperature we found above, we can 

write that the total change in internal energy is mgd
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B
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Notice that all the annoying stuff—N and kB, just go away! That is why you should wait 
until the end to substitute numbers. 

To find the total heat which must flow into the cylinder to achieve our desired goal, 
all we do is add the two results we’ve found. That is, 

mgdmgdmgdWUQ
2
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2
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=+=+∆= . Notice the inefficiency of this: We’ve had to use 

150% more energy heating the gas up than we actually got out of the system in terms of 
work! That’s not very efficient. But that’s a fact of life: Most of the time, we waste more 
energy than we use and not because of poor engineering, just because of fundamental 
laws of Physics. (Poor engineering just exacerbates this.) This situation would be even 
worse if we’d used some gas with more degrees of freedom than a monatomic gas, as 
you’ll see in the next problem. 

Inserting numbers into this, we get JmgdWUQ 5
2
5

==+∆= . 

Now, finally, to find the final temperature we will need the original temperature. I 
didn’t give you this, so we’ll have to do it symbolically, without using numbers. (As I’ve 
told you repeatedly: If I don’t specify a value for something that you think you’ll need, 
just work the answer out symbolically. Often, you’ll discover that you didn’t need the 
number at all. If it turns out that you do need a specific value at the end, you are welcome 
to substitute a reasonable number for the quantity—just make sure to state this explicitly.) 

Starting with the ideal gas law, we have TNkPV B= . Now, the change in 

temperature is given by 
BNk

mgdT =∆ , as found previously. Since we don’t know the 

number of atoms in the gas, N, we’ll have to get this from the ideal gas law. This gives 
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even prettier if we remember that the pressure is just the weight divided by the area. So 
we can write 
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where, as before, h is the original height of the cylinder. 



Even though we don’t know what  is, we can find the multiplicative factor. 

This is 
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. So we need to increase the temperature by 20% 

(measured on an absolute temperature scale!) to lift the mass the prescribed distance. If 
we started with the gas at 300 K, we would have to increase the temperature to 360 K. 

2. Again consider the system above. If the monatomic ideal gas were 
replaced by a diatomic ideal gas, how much heat would need to be 
added to the system to achieve the same result? Will the final 
temperature be different in this case? 

Recall that previously we obtained mgdmgdmgdWUQ
2
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2
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=+=+∆= . The 
2
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in the first term of this came from the heat capacity of a monatomic ideal gas. If we look 
even more closely, it came from a thing called “the equipartition theorem” which states 

that each “degree of freedom” of a system gets Bk
2
1  in the heat capacity. Now, a 

complete discussion of the equipartition theorem is way beyond this course, but we 
looked at how it applies to a diatomic system in class. Recall that the “3” for the 
monatomic system came from the fact that each molecule (atom) can travel in three 
possible directions (x, y, and z). A diatomic molecule can do this as well, but a diatomic 
molecule can also rotate in two possible directions and can also vibrate. The result is that 
a diatomic molecule has 7 degrees of freedom (six of these are relatively easy to see, the 
seventh is very subtle and I’ve known many professionals who miss it—kinda scary!) so 

it has a heat capacity of Bk
2
7 . That is, a sample containing N molecules requires an 

energy of TNkB∆2
7  to change its temperature by an amount T∆ . 

This accounts for the change in internal energy of our sample. The work done is the 
same. So the first law of thermodynamics for the diatomic molecules in a cylinder/piston 

system is mgdmgdmgdWUQ
2
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2
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=+=+∆= . Inserting numbers, this gives 
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2
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==+∆= . 

3. One hundred moles of an ideal, monatomic gas fills a cylinder at a 
pressure of  at 300 K. The sample then undergoes the 
following set of processes: 

Pa5101×

a. The sample’s pressure is kept constant (as in the problem 
above) but heat is added to it to increase its volume by 500 ml. 



b. Next, the piston is clamped in place so that the volume is fixed 
while the gas is cooled down. Its temperature is reduced until 
its pressure is reduced by . Pa4105.2 ×

c. The mass sitting on the piston is reduced to maintain the new 
pressure and the gas is compressed by 500 ml (back to its 
original volume). This may require the addition or removal of 
heat. 

d. Finally, the volume of the gas is fixed and then heat is added 
or removed from the gas to increase its temperature back to 

. Note that this returns the system back to its original 
configuration. 

Pa5101×

i. How much net work is done by or on the piston in this cycle? 

ii. For each of the four steps, determine how much heat must be 
added to or removed from the system. 

iii. Assuming that any heat removed from the system is lost, what is 
the efficiency of the process? This is the ratio of net work done by 
the system to total energy added to the system. 

This seems way more complicated than it actually is. As with any complicated-
looking problem, the best way to attack it is in bite-sized pieces. Let’s do it step by step. 

First, note that the system has gone through a complete cycle. That is, it is in the 
exact same state at the end of the process as it was when it began. As an aid, it makes 
sense to plot the pressure and volume of the system in each of these steps on a “P-V” 
diagram. In this case, this is particularly easy since steps “a” and “c” are “isobaric” 
processes (pressure held constant) and will, therefore, appear as horizontal lines on our 
P-V diagram and steps “b” and “d” are “isochoric” processes (volume held constant) and 
will, therefore, appear as vertical lines on our diagram. This gives us: 

 



d b 

c 

a 

P 

V
It is true, in general, that the total work done by a system that goes through a 

complete cycle is just the area enclosed by the cycle on a P-V diagram. If we had 
Calculus, we could work with much more complicated systems. But, with our limited 
toolbox, we are stuck with relatively simple systems (although they do not have to be 
“iso” type systems—there’s no rule that says that anything has to be held constant). In the 
case of the system depicted by this cycle, it is clear that the area enclosed by the cycle is 
just  where VPQA ∆×∆== P∆  is the pressure change incurred in steps b and d (except 
for the sign) and  is the volume change incurred in steps a and c (again, save for the 
sign). Inserting numbers, we get (remembering to express the volume change in cubic 
meters) . 

V∆

JmVPQ 5.12105105.2 344 =×××=∆×∆= −

Now, let’s look at the heat flow in each step separately: 

a: This is identical to the system in problem #1. We can just use the expression 
for the heat capacity of a monatomic ideal gas (I also derived this for you in 

class): JmPaVPQ 125105101
2
5

2
5 345 =××××=∆= − . 

We’ll need the final temperature in a little while, so let’s calculate that while 
we’re at it. This can easily be done using the ideal gas law adjusted to allow 
for the fact that we know a change in volume but don’t really feel like 
solving for the volume itself: TNkVP B∆=∆ . Solving for the change in 

temperature, we have K

K
J

J
Nk

VPT
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1038.11002.6
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=
×××

=
∆

=∆
−

. 



(Notice that I cheated a smidge and used the fact that JVP 125
2
5

=∆  to get 

JQVP 50
5
2

==∆ .) So the final temperature is given by . KTf 06.300=

(Does this seem like a small change in temperature to you? Well, think 
about it: We put 125 joules into the gas, total. Fifty joules of this went to do 
mechanical work. So we’ve only added 75 joules to the internal energy. But 
if we were to calculate the initial internal energy [do it!], we would find that 
it is about . So adding 75 joules is only increasing the internal 
energy by about 2/100ths of a percent—a tiny change!) 

J51074.3 ×

b: Now we’ve got an isochoric process. All heat that flows into or out from the 
system in an isochoric process increases or decreases the internal energy 
(which shows up as temperature change) in an isochoric process since no 
work is done. Using the ideal gas law, we can write TNkPV B∆=∆ . Now, it 
is tempting to start throwing some numbers around to solve for the unknown 
quantities in this. You certainly can do that. But a very useful technique 
with which you should become familiar is to take a ratio—find the fractional 
changes in the quantities you’re looking for. This is a real effort-saver. Let’s 
divide both sides of the above expression by the “normal” ideal gas formula 

. This gives (after canceling all the stuff that’s the same in the 

numerator and the denominator) 

TNkVP B=

T
T

P
P ∆
=

∆ . So 
P
PTT ∆

=∆ . To turn this 

into an energy, we just multiply by BNk
2
3  (since it’s a monatomic gas). 

This gives 
P
PTNkTNkQ BB

∆
=∆=

2
3

2
3 . Now we can just stick in the 

numbers: 

J
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K
J
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P
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4
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×
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∆
=

−

(note the sign—we are reducing the pressure so the heat flows out of the 
system). 

Once again, let’s just figure out what the new temperature is. Even if we 
don’t need it later, it’s interesting to know. 

K
Pa

PaK
P
PTT 75

101
105.206.300 5

4

−=
×
×−

×=
∆

=∆ . So our final temperature is 

about 225 K. 



c: The new pressure is now . We do the same thing as in step 
a, only with the new pressure and in the opposite direction. 

PaP 4105.7 ×=

( ) JmPaVPQ 75.93105105.7
2
5

2
5 344 −=×−×××=∆= − . Once again, heat 

is removed from the system. 

Once again, let’s find the temperature in case it’s useful in the future. Using 
the exact same method as in part a, we have 
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−
. Again, a really tiny 

number. We could almost certainly ignore this temperature change and the 
one that we found in part a without noticing the loss of accuracy. But, 
inserting this just for completeness, we have KTf 015.225= . Let’s just call 
it 225 K. 

d: Finally, we warm things up again. We can follow the same procedure as in 
step b. We have  
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The total work done by this system was (as found above) 12.5 joules. To get 
this, we had to put in . We also extracted . If 
we built our system so that the extracted energy could be reused, then we’d 
be in fine shape. But the presumption stated in the problem is that all the 
extracted energy is lost. (During office hours I mis-advised a couple of 
people on this. My apologies: My instructions in the problem were to throw 
the extracted energy away, not account for it in the total efficiency. Of 
course, you will not be penalized for doing this.) So the total efficiency is 
the ratio of the work done to the energy put in. This is 

J41035855.9 × J4103594.9 ×

4
4 103.1

1036.9
5.12 −×=
×

=
Je . 

Of course, this is a horribly inefficient system! In reality, we would find a 
way to reuse much of the extracted energy, but never all of it. 

 



4. Heat is added to a system consisting of a cylinder filled with a 
monatomic ideal gas and a piston that is not constrained to have a 
constant pressure. The pressure is (somehow) continuously 
adjusted so that the volume increases as heat is added to the system 
without the temperature changing. The temperature is maintained at 
500 K. The system begins with a pressure of  and a volume 
of 2 liters. At the end of this isothermal process, its volume is 3.5 
liters. How much work was done in this process? How much heat 
had to be added to the system to achieve this work? 

Pa5103×

Wow, a very simple one compared to that last one! Really, all that you have to 
realize with this system is that it is isothermal. In this case, we derived an equation in 

class that gives the total work done. This is ⎟⎟
⎠
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TNkW ln . Of course, I didn’t tell 

you the number of molecules, but that shouldn’t slow you down at this point. You know 

to use the ideal gas law to get 
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We can directly insert numbers into this and get 
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(Notice that I got lazy and expressed the volume in liters inside the parentheses. Since I 
knew that the units on the numerator and the denominator would be the same and would 
cancel, I knew that I could get away with this. This sort of thing is a time-saver, but make 
sure you know what you’re doing before trying it.) 

Of course, since this is an isothermal process, all energy added to the system goes to 
work. The heat added and the work done are the same. .8.335 JQ =  

 

Problems #5 and #6 have been moved to the next assignment. 
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