
Physics 206b 
Homework Assignment II 

SOLUTIONS 
 
1. A pendulum is constructed out of a very thin rod of copper with a bob at 

the end with a mass of 2 kg. When the pendulum is initially built, its 
temperature is 290 K and it has a period of one second. If it is warmed 
up to a temperature of 310 K, what will its period be? 

What a fine way to kick off the semester! I intentionally 
threw a problem at you that made explicit reference to a 
topic we dealt with last semester, pendula, to remind you 
of a critical feature of this course: You don’t get to 
forget! Physics, by its nature, is cumulative. The 
phenomena, laws, and principles we studied last semester 
did not stop being true when you turned in your final 
exams. You are responsible for all the material studied up 
to this point! Yes, this does imply a somewhat 
uncomfortable burden for my “stepkids”—if you didn’t take 
Physics 206a with me, then keeping track of just what 
material you should know will require a bit of work for 
you. To aid you in this, I’ve left the web site from last 
semester in place for a little while. I will take it down 
on September 3rd, so make sure you go there soon and grab 
all the background material. 

Let’s take a look at this problem. We are told that the 
pendulum’s shaft is made of copper. We are also told that 
it is thin. This is a hint of how to approach the problem. 
The fact that the shaft is thin means that almost all of 
the mass is concentrated in the bob. Is all of it located 
in the bob? No! But we can legitimately approximate this as 
being the case here. When the mass of a pendulum can be 
considered all to be located in its bob, the pendulum is 
called “simple.” 

We know, from our past analysis, that the period of a 

simple pendulum is given by 
g
LT π2= , where  is the length 

of the shaft and 

L

28.9
s
mg =  is the strength of gravity at the 

surface of the earth. (This equation actually works 
anywhere in the universe. You just have to replace the g  
with whatever acceleration a freely falling object 
experiences wherever the pendulum is.) (I often forget 
whether the g  goes in the denominator or the numerator of 



this equation. This is where a dimensional analysis will 
save the day! Since the period has the dimension of time, a 
quick piece of algebra tells us that the g  must be in the 
denominator. This is a useful trick that you should get in 
the habit of using!) So the period will vary if the length 
of the shaft varies. Since the shaft is a rod of copper, 
changing its temperature will cause its length to change, 
so the period will depend on the temperature. Now all we 
have to do is figure out how much. 

The change in the length of an object when its 
temperature changes is given by  

TLL ∆=∆ α0 . 

Here  is the length of the object at some initial 
temperature, 

0L
T∆  is the change in temperature of the object, 

and α  is the (1-d) coefficient of thermal expansion for the 
substance out of which the object is made. So the length of 
the object after its temperature is changed will be the 
initial length plus the change in length (which may be 
positive or negative—be careful!). This means that the 
final length of the shaft will be 

( )TLTLLLLLf ∆+=∆+=∆+= αα 10000  

So the period of the pendulum after the temperature changes 
will be  
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CAUTION!: Notice that there are two different quantities in 
this expression that are denoted by the letter “T”. One is 
the temperature and the other is the period. If you fall 
into the trap of formula-hunting rather than thinking about 
what you’re doing, you will confuse these two and get into 
very big trouble. Do not let your brain turn off when you 
are solving a problem.  

Now, at this point we can do this the hard way or the 
easy way. The hard way is to use the fact that the period 
at the original temperature is 1 second to solve for the 
original length of the rod and then to stick that number 
into the equation that we have found to work out the final 
period. That will work. But I like the easy way better—if I 



want more work, I’ll solve a harder problem, not solve a 
problem harder. The easy way is this: Note that we can 
rewrite the equation for the final period as 

( )T
g
LTf ∆+= απ 12 0 . 

Well, now it should be obvious what to do: The quantity 

g
L02π  is precisely the original period. That is s

g
L 12 0 =π . 

So we can just write ( ) ( )TsT
g
LTf ∆+×=∆+= ααπ 1112 0 . Piece of 

cake! We’ll need to look up the coefficient of thermal 
expansion for copper, however. This is found in your text 

in Table 12.1 (page 365) to be ( ) 15107.1 −− °×= Cα . Since the 
change in temperature is 20° C (remember that one degree 
change on the Celsius scale is the same as one Kelvin), we 
have  
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That’s a small change, but, as we’ll see in the next 
problem, the impact can be huge. 

2. For the pendulum described in the previous problem, how many cycles 
will the pendulum go through in 24 hours at the higher temperature? If 
the pendulum is used as the heart of a clock, what time will the clock 
display after 24 hours at the higher temperature if it read 3:00 p.m. at the 
instant the temperature was increased? 

This is a very straightforward piece of number crunching. 
I just wanted you to refresh your memories about what a 
period is. Also, the results are interesting in their own 
right. 

The “period” of an oscillating system is the total amount 
of time needed for it to go through one complete cycle of 
its oscillation. In this case, that time is 1.00017 
seconds. We can write sn 00017.1hours24 ×=  where  is the 
number of oscillations (not necessarily an integer). A 
teensy bit of algebra gives 

n



3.86385
00017.1

86400
1.00017
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===

s
s

s
n . 

So the pendulum will go through 86385.3 cycles in one day 
instead of 86400 cycles, as it was designed to do. 

The repercussion of the variation that we’ve just 
calculated is that a clock built to use this pendulum will 
not keep correct time. Notice that it’s off by about 14.7 
cycles per day—that is, about 14.7 seconds. So, the clock 
will read 2:59:44.3 instead of 3:00. A clock that slips by 
15 seconds each day rapidly accumulates an error that is 
quite severe! The implications of this for navigation and 
its solution will be discussed in class. 

3. A cube of aluminum that is 5 cm on each side is placed in 1 liter of water 
at 10° C in a graduated cylinder. The water is warmed up slowly, so that 
the aluminum remains in equilibrium with it, to a temperature of 90° C. 
What volume is indicated on the graduated cylinder at the higher 
temperature? (Ignore thermal expansion of the cylinder.) 

This really is pretty much just plug-and-chug, but it’s 
always a good idea to do some thinking first. Let’s begin 
by figuring out what’s going on here. We have 1 liter of 
water and a 5 cm cube of aluminum. The cube and the water 
warm up. Both of these objects will expand when their 
temperature increases, so the total volume will increase. 
Since the aluminum cube is inside the water, the volume 
measured by the graduated cylinder will be the sum of the 
two volumes—i.e., the total volume of the system. We need 
to figure out what this is. Let’s do it. 

The initial volume of the cube is ( ) 33 1255 cmcmVc == . The 

initial volume of the water is . The equation 
for the change in volume of a substance or object when its 
temperature changes is essentially identical to the one for 
linear expansion 

310001 cmlVw ==

TVV ∆=∆ β0 . 

Notice that the only formal difference is that we’ve 
replaced α  with β —the 3-d coefficient of thermal 
expansion. (In almost all cases, an excellent approximation 
is αβ 3= , as discussed in class.) So the final volumes of 
the cube and the water, respectively, are 
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Again consulting Table 12.1 in your text, we find 
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So, inserting numbers, we get 
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Thus the final total volume is  

333 3.11426.10167.125 cmcmcmVVV fwfct =+=+= . 

4. At 24° C a steel nut is threaded onto a brass bolt. The bolt has a 
diameter of ¼ inch. The nut is slightly loose, with a diameter 10 microns 
larger than that of the bolt. Assuming the nut and bolt always have the 
same temperature as each other, at what temperature will the nut be 
tight? 

Just remember: A hole in a solid will change its size in 
any direction as though it were filled with that solid. So, 
as the temperature of the nut and bolt is changed, both the 
hole in the nut and the diameter of the bolt will expand or 
contract. The amount of the change will be different 
because the two are made of different materials, even 
though the temperature change will be the same for both. 

We’ll do this algebraically in a moment, but let’s think 
about the answer first: Will we have to heat the pair up or 
cool them down? Let’s look at the coefficients of linear 
thermal expansion for the two materials. As before, this is 
found in your text. We have 
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Notice that the nut is slightly loose. If we heat the 
pair up, the bolt will expand more than the nut will and so 
the nut will become less loose as the temperature 
increases. So we expect our change in temperature to be 
positive. Now let’s confirm this with some math. 



For either the nut or the bolt, we can write the final 
diameter as 

( )TDDf ∆+= α10 . 

Although the initial diameters are different for each of 
the objects, their final diameters will be the same—that’s 
the condition stated in the problem. So, we can just set 
these equal to each other 

( ) ( )TDTD boltboltnutnut ∆+=∆+ αα 11 00 . 

Recall that we do know the difference between the two 
initial diameters—let’s call that boltnut DDD 000 −=∆  just to 
keep things neat. So a bit of algebra gives 

( ) TDDD nutnutboltbolt ∆−=∆ αα 000  

and, finally 

( )nutnutboltbolt DD
DT

αα 00

0

−
∆

=∆ . 

Now, it would be perfectly acceptable to stick in numbers 
at this point. But we can make a very good approximation 
and save a bit of work: The initial diameters of the nut 
and bolt differ by only a tiny bit. In the denominator, we 
can just take inch4/100 == nutbolt DD . I’ll do this both with and 
without the approximation to show you. 

Using the approximation given above, we have 
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If we insist on doing it without the approximation, we 
must use 

mD bolt
-3

0 106.35inch4/1 ×==  

while 

mD nut
-3

0 106.36microns 10inch4/1 ×=+= . 



These give 
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This is certainly not identical to the approximate answer 
we found above, but it’s mighty close and it was a lot more 
work. You are encouraged, strongly, to attempt 
approximations like this in your problem solving! Getting 
good at seeing these opportunities can really save you 
effort down the road. 

Note that we’ve found the change in the temperature 
needed to get the nut to snug onto the bolt. The question 
asked for the actual, final temperature. So we must add 
24° C to these answers to get the final temperature: 

. CCCTf °=°+°= 24924225

5. How much energy is needed to raise the temperature of a piece of 
aluminum with a mass of 38 grams by 6 degrees C? (See the table in 
your textbook on page 373.) 

Although we could just plug into a formula for this, I 
prefer to go the long way around so that you can get some 
idea of how this relates to the first law of 
thermodynamics. We hadn’t yet seen the First Law when you 
did this problem, but you know it now. This is WQU −=∆ . 
Stated in words: The change in internal energy of a system 
is equal to the heat put into the system minus the work 
done by the system. In this case, no work is being done by 
the system, so we can say QU =∆ . The change in internal 
energy ( ) shows up as a change in temperature. Note that 
this is not the only way that a change in internal energy 
can be manifested. For example, we could induce a chemical 
change in the system or a phase change. A change in 
temperature is the easiest one to see and to understand, 
however. 

U∆

So heat flows into the piece of aluminum and changes its 
internal energy and that change shows up as a change in 
temperature. The relationship between the change in 
internal energy and the change in temperature is called the 
“specific heat” of the substance and is denoted by the 



letter c. This must be scaled by the quantity of matter—the 
mass of the sample under consideration. 

Putting these together, we get the formula TmcQ ∆= . 
Contrary to our usual policy, we often express the mass in 
a calculation like this in grams rather than kilograms. 
This is because the specific heat is frequently given in 
joules per gram-kelvin (if it is given in kilojoules per 
kilogram-kelvin the number will be the same; in this latter 
case, we can express the mass in kilograms, a standard 
unit, but then we must remember to express the energy in 
kilojoules rather than joules). Checking the table in your 
text, you will see that the specific heat of aluminum is 

kelvingram
joule9.0
⋅

=c . So, in our specific case, we have 

joules.205.2kelvin6
kelvingram

joule9.0grams38 =×
⋅

×=∆= TmcQ  

 

6. A Snickers® bar contains 280 Calories (1 Calorie=1000 calories) of 
chemical potential energy. If such a bar is burned, converting all of its 
chemical potential energy to heat, by how much could it raise the 
temperature of a 500 gram sample of water? 

Usually, I’d recommend converting the kilocalories into 
joules and then just working with them. However, since we 
are working with water in this case, the specific heat is 
particularly easy: A kilocalorie is defined to be the 
amount of heat needed to raise the temperature of one 
kilogram of water by one degree Celsius. So let’s stick 
with kcals. Now we have 

calories.102.8T
kelvingram

calorie1grams500 5×=∆×
⋅

×=∆= TmcQ  

Dividing to solve for the temperature increase, we have 

K.560

kelvingram
calorie1grams500

calories102.8T
5

=

⋅
×

×
=∆  

Clearly this is enough to raise the temperature to the 
boiling point of the water and then to convert much of it 
to steam! (I flubbed a decimal when I wrote the problem or 



I would have specified a larger sample of water. My 
apologies for any confusion this caused!) 

Although it wasn’t asked for in the problem, let’s take 
this the next step: How much of the water will be turned to 
steam? Let’s think about what’s happening to figure out how 
to handle it: Heat (from the burning candy bar) flows into 
the water. This raises its temperature. But once the water 
hits approximately 100° C (it’s approximate because the 
precise boiling temperature depends on the atmospheric 
pressure), the addition of heat does not raise the water 
temperature any further. Rather, it is used in creating the 
phase change to turn the water into vapor. A huge amount of 
energy is needed to accomplish this: Each gram of water 
converted to vapor requires 2260 joules of extra energy! 

So, to figure out how much water gets vaporized, we’ll 
first need to figure out how much of the available energy 
is needed just to raise the water’s temperature to the 
boiling point. Since I didn’t tell you the starting 
temperature of the water, we’ll have to make an assumption. 
(This is always a valid thing to do: If I don’t give you a 
quantity that you think is needed for a calculation, you 
have two option. The best thing to do is simply use a 
symbol to represent the quantity. Often, you’ll discover 
that this quantity cancels out later in the calculation. If 
it doesn’t cancel and you actually want a numerical 
solution [almost always, I’m perfectly satisfied with a 
symbolic result], then simply make up a reasonable number. 
Just communicate with me and your grader that you’ve made 
this substitution and give a couple of words of 
justification for it.) Let’s just assume that the water 
started at about room temperature—let’s say 24° C. To reach 
the boiling temperature of 100° C, we’ll need to raise the 
temperature by 76° C, this is our T∆ . So the total energy 
needed to bring the water to the boiling point is 

calories.103.8K 76
kelvingram

calorie1grams500 4×=×
⋅

×=∆= TmcQboil  

Now, we know that we have , so after we’ve 
got the water boiling, whatever’s left over will go to 
creating vapor. This is . 

The “latent heat of vaporization” of a substance is the 
amount of energy needed to turn a quantity of it into vapor 
assuming that it’s already at its boiling temperature. For 

cQtot
5108.2 ×=

calories1042.2108.3108.2 545 ×=×−×=vaporQ



water, this is 
gram

calories
gram
joulesLv 9.5392260 == . So, taking  to be 

the mass of water turned into vapor, we have 
. This can easily be solved to give 

m

vvapor LmQ ×=×= calories1042.2 5

grams2.448

gram
calories9.539

calories1042.2 5

=
×

=m . So our candy bar could boil away 

almost our entire 500 gram sample of water! 

(I won’t do the extra math here, but now consider the 
possibility if we found that we had more than enough energy 
to boil the water. What then? Well, assuming that we still 
put that energy into the water, which is now vaporized, 
we’d be able to increase the vapor’s temperature above the 
100° point. Using whatever energy was left, we’d just use 

 again to find the final temperature of the vapor. 
We’d have to be careful to use the specific heat for water 
vapor, not water, however.) 

TmcQ ∆=

7. A bartender wishes to cool down a shot of pure ethanol with a mass of 
35 grams by adding a cold chunk of glass to it. (Again, see the table in 
your text.) If a 5 gram piece of glass is transferred from a bath of liquid 
nitrogen (T=77 K) into the ethanol (T=300 K), what will be the final 
temperature of the ethanol? 

The Physics in this problem is simple, but the algebra 
can be tricky, so let’s do it one step at a time. If we 
treat the ethanol and the chunk of glass as distinct 
systems, in each case we have QU =∆ . Now, in the case of 
the glass, since heat will flow into the glass  will be 
positive. In the case of the ethanol, the ethanol will cool 
off (get colder), so 

U∆

U∆  will be negative—energy will flow 
from the ethanol. Now, any energy that enters the glass 
must have come from the ethanol, so we can say 

. Thus ethanolglass UU ∆−=∆ ethanolethanolethanolglassglassglass TcmTcm ∆−=∆ . 

Recall that “∆” means final value minus initial value. 
So  but we have a minus sign for the ethanol’s 

change in temperature, so let’s write 
initialfinal TTT −=∆

finalinitialethanol TTT −=∆− . In 
other words, just flip the order. 

Finally, realize that the final temperature of both the 
ethanol and the glass will be the same—if there were any 
difference between the temperatures of the substances, heat 
would flow from one to the other until the temperatures 



were the same. This is what temperature is, after all: 
Temperature is the thing that stops changing when two 
things are in equilibrium. So we can write 

( ) ( )final
ethanol

initialethanolethanol
glass

initialfinalglassglass TTcmTTcm −=− )()( . Collecting terms with 
the final temperature in them on the left, we have 

( ) )()( glass
initialglassglass

ethanol
initialethanolethanolethanolethanolglassglassfinal TcmTcmcmcmT +=+ . Before 

proceeding, look at what we’ve got: On the left is the 
total thermal energy in the system at the end of the 
process. On the right is the total thermal energy in the 
system at the beginning of the process. Since nothing 
enters or leaves the system, these two are equivalent. 

Now, we solve for the final temperature by dividing and 
substituting numbers (some of which can be found in the 
table in your book): 
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K
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T
ethanolethanolglassglass

glass
initialglassglass

ethanol
initialethanolethanol

final

6.289
95.89

10605.2

45.23584.05

7784.0530045.235

4

)()(

=
×

=

⋅
×+

⋅
×

×
⋅

×+×
⋅

×
=

+
+

=

 

So the drink will be cooled down by about 10.4 degrees. 
The bartender should have used something with a higher 
specific heat. The thing that made this so inefficient is 
the fact that the ethanol has such a high specific heat and 
the glass has such a low specific heat: There’s a lot of 
energy to be gotten rid of in the ethanol, but the glass 
just can’t accept that much energy without heating up 
significantly and the process stops as soon as they are at 
the same temperature. 



8. Consider again the candy bar in problem #6. If the energy is used to 
heat up a sample of ice at an initial temperature of –10°C, what is the 
maximum mass of ice that could be completely melted with the burning 
candy bar? 

It takes energy to warm up ice to a particular 
temperature. It also takes energy to change the phase of 
the ice from solid to liquid. In order to melt the ice, we 
must first add enough energy to it to raise its temperature 
by 10 degrees, to get it to the melting point, and then we 
must add even more energy to do the actual melting. 

To get to the melting point, we use energy found using 
the same formula as in previous problems. This gives 

kelvin.10
kelvingram

calorie1m ×
⋅

×=∆= TmcQmelt  This is just the energy to 

get the ice to the melting point. To get it to melt, we 
must add an additional ffusion mLQ =  where m is the mass of the 

ice and  is the heat of fusion. For ice, fL

gm
cal

gm
JL f 72.797.333 == . So ffusionmelt mLTmcQQQ +∆=+= . Solving for 

the mass, we have gram1012.3
72.79101

108.2 3
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+×

⋅

×
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=
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9. A bar of aluminum is used as a heating element. It is a cylinder with a 
diameter of 5 mm and a length of 7 cm. An electric current is run 
through it so that it heats up to a desired temperature. When it reaches 
its final temperature, it dissipates 1000 W. At what wavelength will the 
“glow” from this object peak? 

We pretty much did this completely in class using the 
filament of a lightbulb instead of the bar of aluminum. 
According to the Stefan-Boltzmann law, the hotter something 
is, the more power each region on the object’s surface will 
emit in the form of “electromagnetic radiation.” Now, you 
don’t know what electromagnetic radiation is, so there’s no 
way that this can be truly meaningful for you at this 
point! But I assure you that we will cover this subject 
more fully later this semester. For now, let’s be content 
with a simple level of understanding. 

The key relation needed to work this problem is not in 
your book (which is a defect! it belongs there—I’ll be 
sending a statement to this effect to the publisher), but 
we discussed it in class. It is called “Wien’s displacement 



law.” A nice little discussion of it can be found at 
http://en.wikipedia.org/wiki/Wien's_displacement_law. 
Basically, Wien’s displacement law says that the intensity 
of the electromagnetic radiation emitted by an object at a 
temperature T  will be greatest at a wavelength given by 

T
Km ⋅×

=
−310898.2λ . 

So, if we can find the temperature of the object, we can 
find the desired wavelength. 

Now, the temperature of an object and the energy 
radiated from it is given by the Stefan-Boltzmann equation: 

AtTeQ 4σ= . 

Here, Q is the total heat lost to the object via radiation 
in a time . The material parameter, e, is the 
“emissivity.” This can take values between 0 and 1, but for 
most solids it is on the large side and for metals it is 
quite reasonable to approximate it as being 1. The 
temperature (on an absolute scale) is denoted by 

t

T ,  is 

the surface area of the object, and 

A

42
J
⋅

81067.5
Kms ⋅

× −=σ  is 

the Stefan-Boltzmann constant—a universal constant. If the 
temperature is constant, then the power is simply the 
energy (heat) dissipated divided by the time over which 
this happens, so 

ATeP 4σ= . 

The Stefan-Boltzmann equation can easily be solved for 
the temperature with a tiny bit of algebra. We have 

4

A
PT
σ

=  

where we approximate 1≈e . The surface area of the cylinder 
can be calculated using the numbers given in the statement 
of the problem. Since the cylinder is very long compared to 
its diameter, we can ignore the energy radiated from the 
“caps” of the cylinder and just say RLA π2= . Substituting 
the numbers given, we get . Now all we need 
to do is put this number and the others given into our 

23101.12 mRLA −×== π



equation for the temperature. This gives 

KK
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A
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We now need only insert this temperature into Wien’s 
displacement law to get 

m
K

Km
T

Km 6
33

1045.1
2001

10898.210898.2 −
−−

×=
⋅×

=
⋅×

=λ . 

As we’ll learn later in the semester, what we call 
“light” is just electromagnetic radiation with wavelengths 
in a particular, narrow range. The color of light depends 
on its particular wavelength. Electromagnetic radiation 
with a wavelength of  cannot be seen directly by 
human eyes, but it’s pretty close. This is light that we 
call “infrared.” It can easily be detected with simple 
instruments. Also, Wien’s displacement law tells us that 
the maximum intensity of the radiation will be at this 
wavelength. But a very wide range of wavelengths will also 
be produced at quite high intensities as well. So this bar 
of aluminum would certainly be seen to glow if you were to 
look at it. 

m61045.1 −×

 

Problem #10 has been moved to the next homework assignment. 


