
Physics 206b 
Homework Assignment XV 

SOLUTIONS 
 
 

1. A pair of narrow slits is illuminated by a monochromatic (i.e., a single 
wavelength of light) source of coherent light with a wavelength of 546 
nm. The slits are 3 microns apart. A screen is placed 2 meters from the 
pair of slits. How far from the central bright spot (n=0) will the first dark 
region appear on the screen? How far from the central bright spot will 
the next bright spot appear on the screen? 
We didn’t derive this explicitly in class, but I stated 

it for you. It is derived in your text. The formula for the 
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where  is any integer, n λ  is the wavelength of the light, 
and  is the distance between the slits. Let’s call the 
distance from the central bright region to the point of 
interest 

d

x  and the distance from the slits to the screen . 

We have (for small angles) 
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small angles is needed to avoid having to use )tan(θ  here. 
The approximation is an excellent one for this system!) 
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interested in the first dark region) and using the numbers 
given in the problem, we have (after solving for x ) 
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The formula for the first bright spot after the central 
one is )sin(θλ dn = . Following the same development as before 
but taking  (after all, 1=n 0=n  is the central bright 
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2. The work function of potassium is 2.3 eV. What is the maximum 
wavelength of light for which potassium will emit electrons via the 
photoelectric effect? 
We have . To find the minimum energy photon 

(maximum wavelength), we will set this equal to zero. So we 

have  which gives 
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All we need to finish the problem is the conversion factor 
(make sure you understand where this comes from!!!) 
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3. Again taking the work function of potassium to be 2.3 eV. If a sheet of 
potassium is illuminated with light with a wavelength of 400 nm (just at 
the threshold between visible and ultraviolet), with what speed will 
electrons be emitted from its surface? 
The energy of the electrons is given by 
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λ

 so we have 
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(It is far easier to just work in eV rather than converting 
to joules all the time, by the way, but since this is a new 
unit for many of you, it is far safer to stick with 
something familiar and just do the conversion to joules.) 

Now this is the kinetic energy of the electrons. We want 
their speed, so we use our old friend relating K.E. to 

speed 
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4. A man is walking slowly. His speed is 
s
m1 . His mass is . What is his 

de Broglie wavelength? 
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This is 
p
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=λ . Finding the momentum first, we have 
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For comparison, the diameter of the nucleus of an atom is 
about . The diameter of an atom is about . m1510− m1010−

5. Consider again the experiment described in problem #1. The slit 
separation is the same and the distance from the slits to the screen is 
the same. One wishes to have the same pattern of “dark” and “light” but 
this time using electrons (“light” would mean many electrons while 
“dark” would mean few or none, in this case). If one wanted the same 
distance from the center to the first dark and light spots, what energy of 
electrons would one use? Express this energy in electron volts. 
I hope you recognized my typo and that I meant problem 

#2! If not, go back and redo it, I’ll wait here... 

Now, for the same pattern, we’ll just need the same 
wavelength. Thus we expect to have nm546=λ  (I could have 
left most of the verbiage out of this problem and just told 
you the wavelength of the electrons right off, but I wanted 
you to reason through this yourselves). From this, we can 

find the momentum using de Broglie’s relation 
λ
hp = . The 

kinetic energy is related to the momentum by 
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this to electron volts using the scale factor 
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quite a difference between de Broglie wavelengths of 
massive objects and the wavelengths of electromagnetic 
waves! 



6. A beam of electrons with an energy of 20 eV passes through a small 
hole with a diameter of 500 nm. If the electrons are initially all traveling 
in the  direction, what will their approximate momentum be in the  
direction after they pass through the hole? 

ẑ ŷ

The passage through the hole constitutes a measurement of 
their y  position. Since there is an uncertainty of this 
measurement of , the diameter of the hole, there 
will be a concomitant uncertainty in the momentum in the  
direction. The minimum value of this is set by Heisenberg’s 

Uncertainty relation 
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different values given for this. The quantity is an 
estimate, not a precise value.) Please note that this is a 
minimum! One can certainly have uncertainties larger than 
those predicted by Heisenberg’s relation, just nothing 
smaller than them. 

Now, since the electrons have no momentum in the  
direction before passing through the hole, any momentum 
they have in that direction after passing through the hole 
is due to the measurement made by the hole. Using this, we 

have 
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Now, if you want to push yourselves: The total momentum 
and energy are still conserved. Use the fact that the total 
momentum is unchanged to find the final angle at which the 
electrons emerge. 

To do this, we realize that )sin(θ=
total
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p
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 and, using 

conservation of energy, we have 
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zero! 
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7. The Paschen series is the set of spectral “lines” emitted from hydrogen 
atoms undergoing transitions terminating on the n=3 level. What are the 
wavelengths of the light emitted from the three most energetic 
transitions in the Paschen series? 
The energies of the Paschen series are given by 
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of the terminal orbital. Now, the energy of a photon is 
related to its frequency via Planck’s relation, . But 
the frequency is related to the wavelength (in vacuum) by 

hfE =

cf =λ . So the energy of a photon is related to its 

wavelength by 
λ
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formula in terms of wavelength and just lump all the 
constants together into a new constant. This is knows as 
the “Rydberg constant,” denoted by the letter R , and it has 
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m

R 11009737.1 7×= . Thus, we have ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−= 22

111

if nn
R

λ
. 

I made an error in the statement of the problem. I meant 
to say least energetic transitions. There is no set of most 
energetic transitions, although, as we’ll see in a moment, 
there is a limit for the absolute most energetic 
transition. My apologies for any confusion. 

The most energetic photon is what’s known as the “band 
edge.” It is the limit for the wavelength as  approaches 

infinity. This gives 
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yields  or 820 nm. m-7108.2×=λ

Solving for the least energetic transitions (as I’d 
intended), we would have 6or,5,4=in . These give, 

respectively, , , and 
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8. How fast would someone need to move relative to an observer for that 
person’s watch to appear to move at half the speed of the watch of the 
observer? 
We need to define an “event” with a duration. Let’s call 

the event the motion of a clock’s hands through 1 hour. 
Now, there will be two frames in which the event is 
observed. In one of those frames, the beginning and end of 
the event will occur at the same spatial point. I.e., if 
the clock is hanging on a wall in a ship, its position in 
the ship’s frame will not change in that hour. On the other 
hand, that same clock’s position will change in the frame 
of an observer on the shore. The time as measured in the 
frame in which the position doesn’t change is called the 
“proper time” and is denoted by . The time as measured in 
the other frame is denoted by  and has no special name. 
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We want the time as measured in the other frame to be 
twice the proper time. Using the Lorentz formula for time 

dilation, this is 
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