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1. An object is placed 14 cm away from a lens with a focal length of 9 cm. Use ray 
tracing to determine, qualitatively, the location of the image. (I.e., you needn’t be 
ultra-precise in this, but do keep the distances as close to proportional as you 
can.) 

Here’s a “cookbook” way of drawing this: First, draw a 
centerline for reference. Then, draw an icon representing the lens. 
Remember that we are using a “thin lens” approximation, which means 
that we don’t need the lens to be accurately represented. We’ll 
consider the thickness to be zero and act like all the bends that 
it makes in the light happen along a plane. So we just sketch in 
something to remind us where the lens is. Since lenses are 
symmetric in the thin lens approximation, light from the left 
traveling parallel to the optic axis will cross the axis a distance 
f from the lens and light from the right traveling parallel to the 
optic axis will also cross the axis a distance f from the lens. We 
indicate these distances by drawing an X on either side of the lens 
a distance f from it (appropriately scaled, of course). The 
locations of the Xs are called the “focal points.” Note that a 
serious source of error is to confuse a focal point with an image 
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point! The focal point is the image point for an object at 
infinity. All other object distances have their own image 
distances, but the focal points for a lens are independent of the 
object locations. 

So far, everything can be done pretty loosely. The next step has 
to be done with some care. That is, putting in the object. An arrow 
makes a dandy object, since it has a definite top and bottom and a 
Physicist can draw one pretty well. This needs to get drawn the 
same scale of distance from the lens as the focal length. So, for 
example, in this case the object is about 50% greater distance from 
the lens than the focal length. This should be drawn to the right 
ratio. 

The next step is to put in some rays. We have three special rays 
for this—please bear in mind that there are an infinite number of 
rays going from the object, through the lens, to the image! But if 
it’s a true image, then all the rays will go there (that’s the 
whole “one-to-one” thing). So, if three rays go there, or even two, 
then all the others will as well. Sometimes, only two are possible, 
which is fine. The third does give a nice bit of redundancy. You’ll 
always be able to do at least two, however. The three rays we have 
are: 

i. The ray that comes off the object parallel to the optic axis 
(the centerline): This ray bends at the lens and then crosses 
the optic axis a focal length from the lens.  

ii. The ray which passes through the center of the lens: This ray 
continues undeviated—just draw a line from the object through 
the center of the lens and keep on going. 

iii. The ray which crosses the optic axis a focal length from the 
lens on the same side as the object: The ray is the analog to 
the one in #i. It hits the lens and then gets bent so that it’s 
parallel to the centerline. Note that if the object is closer 
to the lens than the focal length, this ray cannot be drawn! 

Draw these three rays and their continuations on the other side 
of the lens. See where they cross? That’s the image point! We did 
this for rays from the very tip of the arrow. Try picking a couple 
of points along its shaft and do the same thing for those, 
following all the rules above. Convince yourself that each point on 
the object will be “mapped” to a point on the image. 

Note that the rays all actually go to the image point. This 
point would pass the “paper test,” so the image is real. 



 

2. Using ray tracing, indicate how a single, thin lens can act as a “magnifying 
glass.” What condition must be met by the object distance for this to work? 

We can see from the above picture that an object distance less 
than the focal length of a lens with a positive focal length will 
produce a virtual image that is larger than the original object. 
Let’s go through this systematically. Let’s also introduce some 
numbers to make it a bit more concrete. Let’s take an object 
distance of 40 cm and a focal length of 50 cm. 

Now, since the object is closer than the focal length, we can’t 
use special ray #iii. (We actually can, it just requires another 
little technique. But let’s leave that alone for now.) But only 
two rays are truly essential since wherever they cross will be the 
image for all rays if our image is perfect. So let’s just not 
worry about it. (This graphical technique can be used even for 
non-perfect images [i.e., not a one-to-one mapping], so we’d have 
to use the more complicated method if we were dealing with that 
situation.) 

Using the two rays that we can draw, we quickly see that the 
rays diverge from each other after passing through the lens. There 
is no way they will form a real image. Not to worry, though—we 
know about virtual images. Notice that the rays do meet up, but at 
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a point on the same side of the lens as the object. Anybody 
looking at the rays coming out of the lens would think that they 
came from an object much bigger and farther away from the lens 
than the original object. This is precisely what we mean by a 
“magnifying glass.” The lens creates a virtual image that’s many 
times larger than the object. You may notice that the image is 
also farther away than the object was, but this isn’t nearly 
enough to offset the increase in size. 

Let’s look at the math on this, now. For clarity, I’ll use  
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that the image is virtual, even without doing the drawing. 

The ratio of the size of the virtual image to the object is the 
same as the ratio of the distance between the virtual image and 
the lens and the distance between the object and the lens. The 
ratio of the sizes is called the “magnification” and this can be 

expressed mathematically as 
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We write this as “5x” and would say “this has a 5x magnification.” 

 



3. An object is placed 7 cm to the left of a lens with a focal length of 12 cm. A lens 
with a focal length of 19 cm is placed 17 cm to the right of the first lens. What is 
the location of the final image? Sketch this system with appropriate raytracing 
from the initial object through any intermediate steps to the final image. 

The key to this problem is to remember that the image created by 
the first lens is the object for the second lens. In this case, the 
image created by the first lens is virtual. No matter: We just put 
it where it belongs (the dotted blue arrow). This is the source of 
a set of rays (the blue rays) that pass through the second lens. 
Notice that these rays are unaffected by the first lens. Why? Well 
because they don’t actually exist at the location of the first 
lens! The wonderful thing about images is that the very definition 
of “image” demands that an infinite variety of rays will exist for 
any object/image pair. All of these rays have the same property: 
They start at the object (virtual or otherwise) and pass through 
the image (likewise, virtual or otherwise). Basically, this means 
that if I can draw a line, it can represent a ray. Having found the 
location of the first image, I just use a different set of rays to 
find the second image. Piece of cake! 

Just for yucks, let’s use the thin lens formula to check the 
graphical result. The first image distance is 

cm
cmcm
cmcm

fd
fdd

o

o
i 8.16

127
127

11

11
1 −=

−
×

=
−
×

= . This means that the object distance for 

the second lens will be cmcmcmdo 8.338.16172 =+= . This gives 
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relative to the second lens. This is consistent with our drawing. 

4. Explain why the following statement is both correct and incorrect: “Red light 
added to green light makes yellow light.” 
The word “color” is more than a little ambiguous: While it is 

true that different wavelengths of light have different colors when 
viewed by a human being, it is possible to stimulate the response 
of a human eye to (almost) any visible wavelength by a suitable 
combination of different brightnesses of three so-called “primary 
colors” selected to stimulate the three kinds of cone cells in a 
human retina just the right amount. So we have to distinguish 
between yellow light and a combination of colors which looks the 
same as yellow to a human being. 

Mixing red light with green light does result in a human being 
seeing yellow. That is, everything in the human’s visual system 
will react as though yellow light were hitting their eye. So red 
light mixed with green light makes yellow, from a purely visual 
perspective. (To prove this to yourself, go to your computer 
monitor and, using something like MS Word create an image that is 
yellow. Then, use a magnifying glass to get a good look at the 
“pixels” on the screen that make up the image. There will be red 
ones and green ones, but no yellow ones!) 

However, the phrase “yellow light” implies that the light itself 
is yellow (roughly 570 nm) and that we’re referring to the light 
and not just a human being’s reaction to it. So the statement is 
false: You do not make yellow light by mixing green light with red 
light. You stimulate a response in a human being equivalent to that 
of yellow light if you do this, but you don’t make the light 
itself. 

 



5. Assume a human eye is 25 mm in diameter. A myopic (nearsighted) person can 
clearly see an infinitely distant object when wearing corrective lenses 
(eyeglasses). Lenses are often characterized by their “power” rather than their 

focal length. The power of a lens is simply defined as 
f

P 1
=  and the unit for this 

is the “diopter” where 
meter

diopter 111 = . A lens of this person’s eyeglasses has a 

power of –5 diopters (this is a strong but not extreme prescription). What is the 
focal length of the biological lens in the person’s eye? 
This is a really convoluted way of asking a very straightforward 

question. I did it this way because I wanted to drive home an 
important point: The lens of a human eye should form a real image 
on the retina. This means that the focal length of the lens must be 
equal to the eye’s diameter when the person is looking at a distant 
object. 

In the case of the person described in this problem, a lens with 
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person’s eye will result in clear vision of an infinitely distant 
object. Well, an infinitely distant object will create a virtual 
image  in front of the person’s eye. This will act as the 
object for the lens in the person’s eye, so we now know the object 
distance and the image distance (the diameter of the eye) and so 
can use the thin lens formula to find the focal length. 
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negative of the focal length because the object distance for the 
second lens (the eye’s lens) is positive. Also, we did ignore an 
important fact: We ignored the distance between the eyeglass’s lens 
and the eye’s lens. What we really solved for is the situation 
where the prescription is for a contact lens. People wear their 
eyeglasses roughly 1 cm from the front of their eyes and this is 
important. (Those of you who wear glasses: Slide them forward and 
back relative to your eyes. Note how the correction they offer 
changes.). We really should have used an object distance of  
rather than  to take this into account. Notice that this 
distance difference changes the power of the prescription needed by 
about ¼ diopter—this is significant! 
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6. Unpolarized light is passed through three polarizers. The second and third 
polarizers are oriented at 30 and 60 degrees, respectively, with respect to the 
orientation of the first. What fraction of the original light is passed at the end? 
The first polarizer delivers light with a single polarization 

direction. In doing so, it reduces the intensity by 50%. Next, each 
of the successive polarizers reduces the remaining intensity as 
prescribed by the Law of Malus: . The chief source of 

error in applying this is in determining the angle. θ is the angle 
made by the axis of the polarizer measured relative to the 
polarization direction of the light. What’s tough to keep a grasp 
on when working with polarizers is the fact that the light that 
emerges from a polarizer has its polarization pointed in the 
direction of the axis of the polarizer it has just passed through. 
Thus, the angles made by the successive polarizers relative to the 
first polarizer are not relevant. What’s important is that each one 
is oriented at an angle of 30° relative to the one just before it. 
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Using this, we find that each successive polarizer reduces the 
intensity it receives by a factor of ( ) 75.030cos2 =° . Thus the final 
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Note that polarization questions come in two broad “flavors”: 
Sometimes we start with unpolarized light and polarize it. Other 
times, the problem starts with the light already polarized. Be 
careful to note which of these categories a particular problem 
falls into. 

 


