
Physics 206b 
Homework Assignment XIII 

SOLUTIONS 
 

 
1. Place the following in order of either increasing or decreasing wavelength (be 

sure to state which way you’re going). In each case, give an approximate 
wavelength and frequency for the entity: 

a. Yellow light 
b. Blue light 
c. Radio waves 
d. Ultraviolet 
e. X-Rays 
f. Green light 
g. Infrared 
h. Gamma rays 
i. Microwaves 

In increasing order of wavelength, with some 
representative wavelengths and (circular) frequencies, we 
have: 

h. Gamma rays (γ rays) nm1.=λ  and shorter,  and 
higher. 

Hzf 18103×=

e. X-Rays nm50=λ  and shorter,  and higher. 

Note that the difference between X-Rays and γ rays lies 
more in their origin than their wavelength. γ rays 
originate in nuclear events while X-Rays originate in 
the electrons in atoms. 

Hzf 15106×=

d. Ultraviolet nmnm 10400 −=λ ,  — . Hzf 14105.7 ×= Hzf 16103×=

b. Blue light nm450≈λ ,  Hzf 14107×=

f. Green light nm550≈λ ,  Hzf 14105.5 ×=

a. Yellow light nm590≈λ ,  Hzf 14105×=

g. Infrared nmnm 000,100750 −=λ  

( mmicronsnm µ100100000,100 == ), —  Hzf 14104×= Hzf 12103×=

i. Microwaves cmm 10100 −= µλ , —  Hzf 12103×= Hzf 9103×=



c. Radio waves cm10=λ  and longer,  and lower Hzf 9103×=

I found an excellent reference for this on the web at 
http://en.wikipedia.org/wiki/Electromagnetic_spectrum 

Here it is (we’ll talk about the last column, “energy” 
later this semester): 

  
Legend: 
γ = Gamma rays 
HX = Hard X-rays 
SX = Soft X-Rays 
EUV = Extreme ultraviolet 
NUV = Near ultraviolet 
Visible light 
NIR = Near infrared 
MIR = Moderate infrared 
FIR = Far infrared 
Radio waves: 



EHF = Extremely high frequency (Microwaves) 
SHF = Super high frequency (Microwaves) 
UHF = Ultrahigh frequency 
VHF = Very high frequency 
HF = High frequency 
MF = Medium frequency 
LF = Low frequency 
VLF = Very low frequency 
VF = Voice frequency 
ELF = Extremely low frequency 
 
2. When light enters a piece of glass, it slows down. Since we know that 

v=× fλ , where v is the speed of light inside the glass, either the 
wavelength or the frequency (or both!) must change, since v is always 
smaller than c. Explain why it is that the wavelength changes and not the 
frequency. 

Remember the cause of the electromagnetic wave: 
Jiggling charge. The thing which is waving is the force 
experienced by a charge due to the jiggling of some other 
charge somewhere else in the universe. When this time-
varying force hits a charge, it will jiggle in response. 
That charge then becomes the source of the wave. Now, 
imagine two charges: One right on the outside of a piece of 
glass and one right on the inside. Light strikes the 
outside charge and makes it jiggle. This jiggling creates 
the wave that will make the inside charge jiggle. Since one 
is causing the other, there must be a fixed relationship 

Another instant 

One instant 
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between them—that’s just the way the universe works: Things 
don’t react differently at different times when subjected 
to the same influences! (Note: Sometimes things seem to do 
just that, but, in a scientific view of things, this is 
because there was some influence that was neglected but 
which is really important. Tracking down cases like this 
can be very valuable for the advancement of knowledge!) If 
the charge on the inside moved at a different frequency, 
then there’d be no fixed relationship between what the 
outside charge was doing and what the inside charge was 
doing. So the frequencies must be the same. If v changes 
and f doesn’t change, then λ must change. The picture above 
may help. This illustrates the situation if f were the thing 
that changed. 



3. A ray of light enters a sheet of glass, like a windowpane. The two faces of 
the piece of glass are flat and parallel to each other. The angle of incidence 
of the ray is 30°. The piece of glass is 5 millimeters thick. Neglect the 
reflected portion of this ray in this problem. 

a. Make a sketch showing the incident ray and the refracted ray. Also, 
show the ray striking the far side of the glass on its way out and the 
ray leaving the sheet of glass. 

b. What is the angle the refracted ray makes with the sheet of glass? Be 
sure to indicate this on the sketch you made in (a). 

c. What angle will the ray make with the far side of the sheet? Again, 
indicate this on your sketch. 

d. What angle will the ray make with the glass upon leaving it? Once 
again, indicate this clearly on your sketch. 

The key to refraction problems is to deal with them one 
surface at a time. The ray strikes one surface, gets 
refracted, travels through the medium, and strikes the next 
surface. Let’s deal with each of these in turn. At the first 
surface, we have the situation pictured below: 

air 

20° 
30°

glass 



Notice what I’ve done: I started out by sketching the 
surface normal at the location where the ray strikes the 
glass. Always do this! This imaginary line (shown here dotted) 
is a tool which will really come in handy. Next, I sketched in 
the incident ray and the refracted ray. Glass has a higher 
refractive index than glass, so the angle of refraction will 
be lower than the incident angle. (Remember: When light goes 
from something with a low refractive index to something with a 
high refractive index, the angle is smaller in the substance 
with the higher refractive index.) 

We can directly calculate the refracted angle. For this, we 
need the Law of Refraction: ( ) ( )rrii nn θθ sinsin = . Now, it’s very 
important that you recognize that “incident” and “refracted” 
are just ways of keeping track. Notice that both sides of the 
equations are the same, just with different numbers. 

Taking the refractive index of glass to be 1.5, this gives 
us ( ) ( ) ( ) ( )rrrii nn θθθ sin5.1sin30sin0.1sin ×==°×= . This can easily be 

solved to give 
( ) ( ) °==⎟

⎠
⎞

⎜
⎝
⎛=⎟

⎠
⎞

⎜
⎝
⎛ °

= −−− 5.19333.0sin
5.1
5.0sin

5.1
30sinsin 111

rθ . 

For convenience and generality, I’m just going to call this 
“ 1rθ ”—remember, if we do a problem with numbers, we have one 
answer; if we do it with symbols, we have an infinite number 
of answers. 

Now, let’s add the second surface to the picture. First, 
realize that “rectilinear propagation” means that the light 
will keep going in a straight line after it gets bent at the 
first boundary. We don’t need to worry about anything between 
the two faces of the glass. So we have: 

air air glass 

1rθ
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Now comes the one hard part of the whole problem: Notice 
that there are two angles inside the glass. We’ve already 
identified one as “ 1rθ ”. The other is the angle that the ray 
makes on its way out. This angle, 2iθ , is identical to 1rθ . This 
is due to one of the fundamental axioms of geometry. 
(“Alternate, interior angles.”) Be careful, though: This is 
only true because the two surface normals that I’ve drawn are 
parallel to each other. In turn, they are only parallel to 
each other because the two faces of the piece of glass are 
parallel to each other! If the faces of the glass weren’t 
parallel, this wouldn’t be true. In that case, we’d have to do 
some geometry to find the answer. 

Once we recognize that the angle of incidence with the far 
face is 1rθ , we can see that the refracted ray leaves the glass 
at the same angle at which it entered in the first place: 

°== 3012 ir θθ . Thus, the ray leaves the glass along a path 
parallel to the path it had when it originally entered. It is 
displaced by a little bit, however. (For an interesting 
additional problem, determine by how much the incoming and 
outgoing rays are displaced from each other.) 

4. A ray of light enters a glass fiber (n=1.5). The fiber is cylindrical and the end is 
exactly perpendicular to the axis. The fiber is “clad” with a material with an 
index of refraction of nclad=1.47. (The cladding completely surrounds the fiber 
except for the ends.) What is the “acceptance angle” of this fiber? The 
“acceptance angle” is the maximum angle of incidence for which rays will 
remain trapped in the fiber. 
Fibers are essentially never used without a “cladding.” 

That is, a fiber, under real conditions, is always encased 
in a sheath of glass that is usually quite thick. (Indeed, 
real fibers are first clad and then coated with plastic and 
then the whole set is frequently armored to protect the 
delicate, hair-thin fiber from the elements.) The cladding 
has a lower refractive index than the fiber. This ensures 
that fibers will be able to achieve total internal 
reflection but that this reflection will not be defeated 
(the technical term for this is “frustrated”) by contact 
with other fibers, specks of dust, or other environmental 
features. 



 

So let’s see the problem. We have the geometry shown 
below: 

Notice that the incident angle is, at most, the 
acceptance angle. So I’ve called it aθ . The incident ray is 

refracted according to good ol’ Snell’s law to give rθ  
inside the fiber. This ray travels until it hits the side 
of the fiber. It makes an angle cθ  with the normal for the 
side of the fiber. This will be the critical angle when the 
original ray was incident at the acceptance angle. So far, 
so good. 

Now, I intentionally drew the surface normal to the front 

face extra long to show you that °==+ 90
2
πθθ rc . (It’s close 

to the end of the year so I’ll be nice and use degrees as a 
gift.) Thus cr θθ −°= 90  and ( ) ( ) ( )ccr θθθ cos90sinsin =−°= . 

We have a relationship already for the critical angle. 
Remember, the critical angle is the angle of incidence for 
which the angle of refraction is 90°. Thus, if the fiber is 
clad with a material with a refractive index of  and the 

fiber has a refractive index , we must have 
on

1n ( ) oc nn =θsin1  

which gives ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= −

1

1sin
n
no

cθ . This leaves us with a bit of a 

quandary: We want to find the cosine of something for which 
we know the sine. The result is kinda cute. We call up our 

cθ

aθ

rθ



old friend: SOHCAHTOA. We know that ( )
1

sin
n
no

c =θ . We also know 

that ( )
H
O

c =θsin  for some triangle. We want to find ( )cθcos . No 

problem! Since we know the “adjacent” side of the triangle 
(“what triangle?” you’re probably asking—well, it doesn’t 
actually exist, but we can pretend that it does; it’s a 
triangle with  as one side and  as its hypotenuse with 

the angle 
on 1n

cθ  across from —I’ll draw a picture in a moment) 
and its hypotenuse, we can find the other side. Making a 
picture (see, I told you I’d do that), we have 

on

1n
on

A
and we can easily find, using the theorem of Pythagoras, 

that the side labeled “A” is given by 22
1 onnA −= . Thus, 

( )
1

22
1cos
n

nn o
c

−
=θ . (This is a fine trick to add to your 

“toolbox.”) 

So we have ( ) ( ) ( )
1

22
1cos90sinsin
n

nn o
ccr

−
==−°= θθθ  and we want to 

find aθ . Let’s just assume that the incident medium (air, in 

this case) has a refractive index of . We can always set 
this equal to 1 if we decide that the medium is air. Thus 
we have 

in

( ) ( )rai nn θθ sinsin 1= . We now know ( )rθsin  in terms of 
various refractive indices, so we can just plug it in. This 

gives ( ) ( ) 22
1

1

22
1

11 sinsin o
o

rai nn
n

nn
nnn −=

−
×== θθ . 

Finally, we can solve this for the acceptance angle to 

get ⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛ −
= −

i

o
a n

nn 22
11sinθ . Now we can plug in some numbers. For 

the problem as stated, 47.1=on . This gives 
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4. An object is placed 14 cm away from a lens with a focal length of 9 cm. 
Determine the location of the image using the thin lens formula. Also, 
determine the magnification of the system. 
Another plug-and-chug problem (too easy!). The thin lens 

formula is 
qpf
111

+=  where  is the focal length of the lens 

and 

f

p  and  are the object and image distances. It doesn’t 
matter which of these two you pick for the image and the 
object since their roles in the formula are identical. This 
is why I prefer this version of the formula to a variation 

which is very common 

q

io ddf
111

+= . This second version does 

help one remember what the variables are, but it obscures 
the symmetry. Feel free to use whichever version you feel 
most comfortable with. 

A quick bit of algebra gives us 
fq

fqp
−

=  into which we 

stick the numbers provided and get 

cm
cm
cm

cmcm
cmcm

fq
fqp 2.25

5
126

914
149 2

==
−
×

=
−

= . 

Note where the symmetry might help us with this: The 
distance we found is either the image distance for an 
object at the location specified or the object distance 
needed to yield an image at 14 cm. You observed this 
phenomenon for yourselves in the lab exercise on lenses. 

The magnification is simply the ratio of the image 

distance to the object distance: 8.1
14

2.25
===

cm
cm

q
pm . 



 

5. For the object and lens described above, at the separation stated above, 
Use ray tracing to determine, qualitatively, the location of the image. 
(I.e., you needn’t be ultra-precise in this, but do keep the distances as 
close to proportional as you can.) 

Here’s a “cookbook” way of drawing this: First, draw a 
centerline for reference. Then, draw an icon representing 
the lens. Remember that we are using a “thin lens” 
approximation, which means that we don’t need the lens to 
be accurately represented. We’ll consider the thickness to 
be zero and act like all the bends that it makes in the 
light happen along a plane. So we just sketch in something 
to remind us where the lens is. Since lenses are symmetric 
in the thin lens approximation, light from the left 
traveling parallel to the optic axis will cross the axis a 
distance f from the lens and light from the right traveling 
parallel to the optic axis will also cross the axis a 
distance f from the lens. We indicate these distances by 
drawing an X on either side of the lens a distance f from 
it (appropriately scaled, of course). The locations of the 
Xs are called the “focal points.” Note that a serious 
source of error is to confuse a focal point with an image 
point! The focal point is the image point for an object at 
infinity. All other object distances have their own image 
distances, but the focal points for a lens are independent 
of the object locations. 

f 

f 

 



So far, everything can be done pretty loosely. The next 
step has to be done with some care. That is, putting in the 
object. An arrow makes a dandy object, since it has a 
definite top and bottom and a Physicist can draw one pretty 
well. This needs to get drawn the same scale of distance 
from the lens as the focal length. So, for example, in this 
case the object is about 50% greater distance from the lens 
than the focal length. This should be drawn to the right 
ratio. 

The next step is to put in some rays. We have three 
special rays for this—please bear in mind that there are an 
infinite number of rays going from the object, through the 
lens, to the image! But if it’s a true image, then all the 
rays will go there (that’s the whole “one-to-one” thing). 
So, if three rays go there, or even two, then all the 
others will as well. Sometimes, only two are possible, 
which is fine. The third does give a nice bit of 
redundancy. You’ll always be able to do at least two, 
however. The three rays we have are: 

i. The ray that comes off the object parallel to the 
optic axis (the centerline): This ray bends at the lens 
and then crosses the optic axis a focal length from the 
lens.  

ii. The ray which passes through the center of the lens: 
This ray continues undeviated—just draw a line from the 
object through the center of the lens and keep on going. 

iii. The ray which crosses the optic axis a focal length 
from the lens on the same side as the object: The ray is 
the analog to the one in #i. It hits the lens and then 
gets bent so that it’s parallel to the centerline. Note 
that if the object is closer to the lens than the focal 
length, this ray cannot be drawn! 

Draw these three rays and their continuations on the 
other side of the lens. See where they cross? That’s the 
image point! We did this for rays from the very tip of the 
arrow. Try picking a couple of points along its shaft and 
do the same thing for those, following all the rules above. 
Convince yourself that each point on the object will be 
“mapped” to a point on the image. 

Note that the rays all actually go to the image point. 
This point would pass the “paper test,” so the image is 
real. 


