
Physics 206b 
Homework Assignment XII 

SOLUTIONS 
 

 
1. In the circuit below, the resistance is Ω37  and the inductor is 140 mH. After 

switch S is closed, how long will it be before the voltage difference across the 
inductor is ½ V? 

 
This is just like the analogous question (question #1) in 

assignment 8, except that inductors behave “opposite” to 
capacitors in some sense. (This is not literally true! It’s 
a good concept to get you started, but don’t take it too 
far.) Let’s walk through what happens when the switch is 
thrown. 

The instant the switch is thrown, the EMF source (e.g., a 
battery) will start a current flowing in the wire. If there 
were no inductor there, the current would instantaneously 

jump from 0 to 
R
VI = , as predicted by Ohm’s law. (Maxwell’s 

equations tell us that this will actually happen over a 
time scale determined by the speed of light and the length 
of the wire, but that timescale is so tiny that we can 
ignore it for this problem—it might as well be zero so far 
as we are concerned.) But this would mean that the loops of 
the inductor would have a very large I∆  occur in a very 
small . Since the t∆ B  field inside the inductor is directly 
related to the current flowing through it, by Faraday’s 
law, this means that the inductor will develop a huge EMF 
of its own very rapidly—essentially instantaneously. Well, 
that can’t persist for more than a teensy instant of time 
since whatever EMF is generated by the inductor will push 
in the direction opposite (because of Lenz’s law) to the 
EMF that created the current in the first place. The net 
result of all of this is that the inductor will fight the 
current and prevent it from becoming large too quickly. It 
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will slowly grow, however, and will asymptotically approach 
the value predicted by Ohm’s law as time passes. 

The EMF produced by the inductor must be opposite to that 
of the “battery” and must start out having the same size as 
that of the “battery,” by the argument above. It will 

evolve according to the equation τ
t

maxL e
−

−= EE  where  is 

the EMF applied to the inductor and 

maxE

R
L

=τ . 

It is very important to remember that the EMF created by 
the inductor starts high and becomes low. It is because of 
this evolution that the current through the inductor starts 
low and becomes high! I can almost guarantee some sort of 
question on the Final Exam which will test whether you 
remember this aspect of these systems! 

Using the above relation we can determine the time at 
which the inductors induced EMF is ½ of the EMF applied to 

it by the “battery.” This is τ
t

maxmaxL e
−

== EEE
2
1

. Here I’ve 

simply ignored the – sign since we really don’t care that 
the inductor’s EMF is opposite to that of the battery. 
Dividing the common term and taking a natural logarithm of 

both sides gives )2ln(=
τ
t

 so 
R
Lt 693.0= . Substituting the 

numbers gives sH
R
L 3

3

108.3
37

10140 −
−

×=
Ω

×
==τ . (Normally, I would 

strongly recommend doing this calculation of τ right off the 
bat—as soon as you see the problem. Having this number in 
your head will guide you through an understanding of the 

evolution of the system.) So .106.2108.3693.0693.0 33 ss
R
Lt −− ×=××==  



 

2. Now consider the circuit below. Initially, the switch is in position 1. After a long 
time, the switch is moved to position 2. Make a sketch of the current flowing 
through the inductor as a function of time after the switch is moved. Use the 
values for R and L from the previous problem. Be sure to indicate on your 

sketch the time at which the current will be at the 
e
1  level. If the EMF provided 

by the battery is 12 V, after 1 millisecond, what will be the current flowing 
through the resistor (this will be an actual value, not just a fraction)? 

 
After a long time, an inductor is just a wire. The 

current flows through it as though it were any other piece 
of wire in the circuit. The current can readily be 
calculated using Ohm’s law. When the switch is thrown to 
position 2 the applied EMF goes away. According to Ohm’s 
law, the current in the inductor ought to vanish as well. 
However, Faraday’s law says that the very fact that the 
current changes creates an EMF in the inductor which 
actually keeps the current going for a little while. Of 
course, since the thing causing the EMF in the inductor is 
the change in the current, the very existence of this EMF 
impedes the current from changing and the EMF drops away. 

Taking this full evolution into account, we can express 

the current as a function of time as τ
t

maxeII
−

=  where 
R
VImax =  

and 
R
L

=τ . We calculated τ in the previous problem and found 

it to be sH
R
L 3

3

108.3
37

10140 −
−

×=
Ω

×
==τ  so the current will drop to 

1/e of its maximum value in . Sketched, this has the 
appearance shown below. The 1/e level is indicated by the 
purple line. 

s3108.3 −×
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Fractional current through a circuit with an inductor
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So after 1 ms, the current will be given by 

max
s

s

max

t

max IeIeII 77.03

3

108.3
101

=== −

−

×
×

−−
τ . Taking AV

R
VImax 32.0

37
12

=
Ω

== , we have 

. AAmsI 25.077.032.0)1( =×=



3. The heating coil in a toaster oven has an inductance of 1 �µH. Assume that 
the toaster is being powered by a D.C. source (of course, they are usually 
plugged in to A.C. outlets, so this is a simplification) which results in 10 A 
flowing through the coil. A person making a piece of toast notices it start to 
burn and quickly unplugs the toaster. A 2 mm spark is observed to be 
produced by the tip of the plug when this is done. Take the breakdown 

voltage of air to be 
mm
kV3 . Given this information, what was the initial rate of 

change of the current through the coil? (I.e., what was 
t
I

∆
∆  initially?) 

We’ve all had this experience, or, at least one very 
similar to it. It’s useful and instructive to look at the 
Physics of it. To throw a spark of any length requires a 
large potential difference between the ends of the spark. 

In air, that potential difference must be at least 
mm
kV3 . 

(As an aside: The amount of potential difference needed can 
be greatly reduced if one has the help of the cosmos. I’m 
not being facetious nor is this unusual. Frequently, cosmic 
rays will enter a system with a potential difference in it. 
The cosmic ray [a high-energy particle created by some 
nuclear “event” in space] strikes an atom somewhere between 
the two points that will, ultimately, be at the ends of the 
spark. This ionizes the atom by knocking off one or more of 
its electrons. There is now a free electron and a free 
positive ion sitting between a pair of electrodes with a 
potential difference between them. The two objects 
accelerate in opposite directions. They smack into neutral 
atoms as they go, ionizing those atoms. The result is an 
“ion trail” which can carry a current requiring a much 
lower potential difference than would have been needed 
without the help from the cosmic ray. This process is 
actually essential for starting things like neon signs and 
some fluorescent tubes.) Clearly, no spark of significant 
length can be created with the 120V available from an 
electrical outlet in a typical home! But we’ve all seen 
such sparks, so what gives? 

Well, the sparks are created not by the 120V potential 
difference between the poles of an outlet but rather by the 
potential difference between the poles of the plug that 
result from induced EMF in the circuit of the device being 
unplugged or turned off. (Many light switches, for example, 
throw a millimeter-long spark every time they are switched 
off. This is a major cause of long-term failure of the 
switches.) According to Faraday’s law, when we try to turn 



something off very quickly, if it has any inductance in it 
it will create an EMF due to the rapid change in current. 
This induced EMF is proportional to the rate of change of 
the current, so it can be huge! 

In the problem you are given, the length of the spark is 
2 mm. This implies that the EMF induced is at least 

V
mm
kVmm 310632 ×=×=E . This is related to the changing current 

by 
t
IL

∆
∆

−=E . Since you are told that the inductance of the 

toaster is , so, ignoring the sign since this just 
tells us that the current is “turning off,” which we 

already know, 

HL 6101 −×=

second
amperes

H
V

t
I 9

6

3

106
101
106

×=
×
×

=
∆
∆

− . 

The number above is all that was asked for in the 
problem. But it’s fun to take it one more step. We know 
that the current will drop according to an exponential 
function. But a quick-and-dirty approximation of the time 
it takes to go from its maximum to zero can be gotten just 
by assuming the dependence is linear, not exponential. It’s 
just an estimate, but it gets one on the right track. We 
know that the current starts at 10 amperes. We also know 

that 
second
amperes

t
I 9106×=

∆
∆

. Thus we can approximate 

s

second
amperes

amperest 9

9
107.1

106

10 −×=
×

≈∆ . So the current “went away” in a 

couple of nanoseconds. This is also the duration of the 
spark that was thrown when the toaster was unplugged. 
That’s a really short interval of time, but a lot happens 
in it! 

4. An inductor consisting of a solenoid with 20,000 windings per meter that is 3 
cm long and 1 cm in diameter is placed in series with a resistor whose 
resistance is 9 mΩ and a capacitor with a capacitance of 187 mF. The circuit 
is driven at 60 Hz. What is the impedance of this system? 
Just plug-and-chug on this one. The impedance of a 

circuit is given by ( )22
CL XXRZ −+=  where R is the 

resistance and  and  are the inductive and capacitive 
reactances, respectively. These last two are given by 

LX CX

LX L ω=  and 
C

X C ω
1

= . We need do only one preliminary 

calculation before finding the final answer: We must find 



the inductance of the solenoid. This is given by 

( ) Hmm
mA

mTlrnL 32
2

4722
0 1018.103.005.1102104 −− ×=×××⎟

⎠
⎞

⎜
⎝
⎛ ××

⋅
×== πππµ . We 

must also realize that the angular frequency used in the 
formulas for the reactances differs from the circular 
frequency in which electrical signals are usually 
expressed. (Yes, this is a huge source of confusion in the 
“real world”! Both types of frequency are measured in Hz. 
In this class, if you’re uncertain, ask! In other contexts, 
it is important not to assume one or the other without 
considering the options. I have seen very serious gaffs 
made by high-level professionals due to this ambiguity. 
Usually ω  is used for angular frequencies and either f or 
ν  [that’s the Greek letter “nu”] are used for circular 
frequencies.) Fortunately, the difference is “only” a 
factor of π2 . (My boss once asked me if I’d mind if he 
reduced my salary by a mere factor of π2 . The lesson 
stuck!) Here, let’s assume that the frequency given is the 
circular frequency—without some sort of guidance, the other 
choice would have been equally justified. I’m assuming it’s 
the circular frequency because U.S. household current is 
driven with a circular frequency of 60 Hz. 

Putting these numbers together, we have 
 Ω=×××=== − 446.01018.16022 3 HHzfLLX L ππω

and 

Ω=Ω=
××

== 014.0
46.70

1
187.0602

11
FHzC

X C πω
. 

Thus 

( ) ( ) ( ) Ω=Ω−Ω+Ω×=−+= − 432.0014.0446.0109 22322
CL XXRZ . 

 

If you treated the 60Hz as the angular frequency instead 
of the circular frequency, you would have gotten 

 and Ω=××== − 071.01018.160 3 HHzLX L ω

Ω=Ω=
×

== 089.0
22.11

1
187.060

11
FHzC

X C ω
. Thus 

( ) ( ) ( ) Ω=Ω−Ω+Ω×=−+= − 02.0089.0071.0109 22322
CL XXRZ . 

 



5. In the previous assignment you performed the following calculation: “A 
sinusoidal electric potential with a peak strength of 120V oscillating at 60 Hz 
(i.e., U.S. household current) is applied to solenoid with 1100 windings per 
meter. The total resistance of the wire is Ω7 . The solenoid has an air-core 
(i.e., no chunk of metal running down its middle). Take the diameter of the 
solenoid to be 2 cm and its length to be 11 cm. What is the maximum energy 
stored in its magnetic field under the conditions described?” Now, calculate 
the contribution the inductive reactance has to the calculated energy. At what 
frequency would current have to be supplied in order for the inductive 
reactance to be as important to the stored energy as the resistance? 
In the previous problem so referenced, we found the 

energy to be ( ) JAHLIU 3252 1072.714.171025.5
2
1

2
1 −− ×=×××== . 

Unfortunately, we found this using an incorrect assumption: 
We assumed that the current was related to the potential 
via the “old” form of Ohm’s law, IRV = . Because of the 
inductance of the solenoid, an applied potential that is 
time-varying will not cause the same current as in the DC 
case. We should have used the version of Ohm’s law that 
takes this into account. This is IZV =  where Z  is the 

impedance, which is given by ( )22
CL XXRZ −+= . This includes 

the inductive and capacitive reactance,  and , 
respectively. Now, in this case, there is no capacitor, so 
we do not include the capacitive reactance. The inductive 

reactance is given by 

LX CX

LX L ω= , thus 22222 LRXRZ L ω+=+= . 

Now, we will use this quantity along with  to find 
the current flowing through the inductor. We can then find 
the energy stored in its field. If we subtract the value we 
found for this without the inductive reactance considered 
from the quantity we so find, that difference will be 
whatever was caused by the inductive reactance. We have 

IZV =

292
2

2222 1076.241360049 H
s

LRZ −××××+Ω=+= πω . Note that I used 

fπω 2=  and took  in this. The circular frequency of 
the potential provided by U.S. wall outlets is 60 cycles 
per second while this equation calls for the angular 
frequency. As I’ve mentioned before, this is a very common 
source of confusion and error and one that is uncommonly 
difficult to avoid. Working out the numbers, we get 

Hzf 60=

00003.71092.349 242222 =Ω×+Ω=+= −LRZ ω . Clearly, the impact of 
the reactance is miniscule, but let’s push through and 
figure out what it is. 



Now, here’s yet another instance in which doing things 
symbolically is loads more fun and useful than doing them 
numerically. I’ll do it that way (are you surprised?). 
Solving for the current (note that this is the amplitude of 
the current—the current itself is a time-varying quantity), 

we get 
222 LR

V
Z
VI

ω+
== . This gives 222

2
2

2
1

2
1

LR
LVLIU

ω+
== . Now, 

substituting numbers we get . So the difference 
in the energy in this situation from that calculated 
previously is . So the contribution isn’t much 
at all—at least at 60 Hz. Now, let’s see if we can drive 
this sucker harder! 

JU 310714.7 −×=

JU 6108.5 −×=∆

Notice that the energy depends on 222

1
LR ω+
. The 

contribution to the energy of the resistance and the 
reactance will be the same when the resistance and the 
reactance are the same. This happens when LR ω= . Solving 

for the frequency, we have .1033.1
1025.5

7 5
5 Hz
HL

R
×=

×
Ω

== −ω  Once 

again, this is the angular frequency, so we need to divide 
by π2  to get the circular frequency. This gives . kHzf 22.21=

 



6. A “narrow pass” filter is to be constructed. It is desired that the filter pass 
signals at 88.1 MHz (that’s the local radio station KDHX). An inductor with an 
inductance of 19 �H is used in this filter. A variable capacitor is included in 
the circuit to tune the filter. The separation between the plates is 0.7 mm and 
the area can be adjusted via a knob. What will be the area of the capacitor 
plates when the radio station is “in tune”? If the capacitor plates are square, 
what is the side-length of the plates? 

 
The filter will have a resonance when the inductive and 

capacitive reactances are equal. Thus we want L
C

ω
ω

=
1

. This 

can easily be solved for the capacitance to give 
L

C 2

1
ω

= . 

Unlike the previous problem, this time we will treat the 
frequency as being the circular frequency. This is standard 
for radio frequencies. (Don’t be concerned if you didn’t 
realize this—there’s really no way you could have known 
without asking.) Thus . This gives HzHz 87 10535.51081.82 ×=××= πω

( )
F

HHzL
C 13

5282 1072.1
109.110535.5

11 −

−
×=

×××
==

ω
. 

Using this capacitance with our formula for the 

capacitance of a parallel-plate capacitor, 
d
AC 0ε= , we can 

solve for the area of the plates. This is 

25

2

2
12

134

0

1036.1
1085.8

1072.1107 m

mN
C

FmdCA −

−

−−

×=

⋅
×

×××
==

ε
. The side length of this 

would be mmml 7.31036.1 25 =×= − . 

 

7. In lab, you recorded the frequency at which the current passed by an LRC 
circuit was greatest. Ideally, this would be the “resonant frequency.” Using the 
values you recorded for the resistance, inductance, and capacitance of the 
circuit (if you didn’t record these, I will provide them to you in class), calculate 
the theoretical impedance of the circuit at the resonance you measured. Also 
calculate what the theoretical resonant frequency is for that system. What is 
the impedance of the system at the theoretical resonant frequency? 
As I announced in class, the values of the inductance, 

capacitance, and resistance of the circuit are, 
respectively, . (Some of you may 
have used .)  

Ω==×= − kRnFCHL 1and,220,108 3

Ω= 220R



The instruction to calculate the theoretical impedance at 
the resonant frequency was a bit of a trick question: The 
resonance occurs when CL XX = . The result of this is that, at 
resonance, RZ = . So the impedance is the same as the 
resistance at resonance. 

The frequency you measured was the resonant frequency. 

This occurs when the angular frequency 
LC
1

=ω . Note that 

the resistance doesn’t enter into this—the role of the 
resistance is that it prevents the current from becoming 
infinite at the resonant frequency. Using the inductance 
and capacitance given, we should see an angular frequency 

of Hz
FHLC

23836
102.2108

11
73

=
×××

==
−−

ω . This gives a circular 

frequency (
π

ω
2

=f ) of Hzf 3794= . 

8. What is the wavelength, in vacuum, of the 88.1 MHz signal mentioned above? 
Plug and chug: In a vacuum, all electromagnetic waves 

travel at a speed of c. Thus, we use cf =λ  to get 

m
Hz
s
m

4.3
101.88

103
6

8

=
×

×
=λ . 


