
Physics 206b 
Homework Assignment XI 

SOLUTIONS 
 
 

1. A square loop of wire with a side length of 13 cm is in a constant magnetic 
field of , as shown. The wire has an overall resistance of . What 
average torque is needed to rotate this loop with a constant rotational 

speed of 

xTB ˆ1.2=
v

Ω3

s
radπ20  (i.e., 

s
rev10 )? For this problem, it is sufficient to take 

. That is, the difference between the maximum flux and 
the minimum flux over the entire rotational range. Then, 

minmax BBB Φ−Φ=∆Φ
t∆  would be the 

time over which that change happens. 
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I was a bit surprised to see people doing this problem a 
different way than I’d intended. Many of you used a formula 
from the book for torque and adapted it to this situation. 
Although this method leads to a slightly different answer than 
the method that I used, it is, nevertheless, still valid. I’ll 
go ahead and do it my way first. Then I’ll do this the way 
that some of you did it. Finally, I’ll show you the answer 
that one gets doing it the “real” way, without the gross 
approximation that both your way and my way used—we’ll see 
that all three methods yield very similar results, as they 
must if they are at all valid. 

First, let’s think about the Physics in this problem: 
Rotating the loop results in a change in the magnetic flux 
through the loop—it’s a maximum when the magnetic field 
strikes the open part of the loop “head on” and a minimum 
(zero) when the magnetic field strikes the loop edge-on. Since 
this change occurs over some interval of time, Faraday’s law 
predicts that there will be an EMF induced in the wire. An EMF 
in a wire results in a current flowing in the wire. A current 
flowing in a wire with a nonzero resistance in it dissipates 
energy at some rate, this is the power. Since energy must be 
conserved, overall, the energy dissipated must be replaced. It 
is replaced by the torque, which does work. 

So, let’s do this one step at a time: First, let’s find the 
change in magnetic flux through the loop. Let’s also make 
another picture. Let’s look at the loop along the axis of 
rotation, for clarity. This gives us: 
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This picture shows the situation when the loop is at the 
minimum-flux position. When it rotates 90° from this position, 
the flux is a maximum, as shown in the next picture. 

 

Now, in making the transition from minimum flux (zero) to 
maximum flux, the loop must go through a ¼ rotation. Since the 

rotational speed is 
s

radπω 20= , this takes s

s
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But I prefer to use symbols. Recalling that the time for ¼ 
rotation is ¼ of the period and recalling the relationship 
between angular frequency, circular frequency, and period, 

T
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2
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π
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, we can just say 
f

t
4
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The maximum flux is ( ) WbmTBAB
22 1055.313.1.2 −×=×==Φ . (The unit 

of magnetic flux is the “weber,” abbreviated Wb.) Combining 
these, we have, according to Faraday’s law (but leaving out 
the minus sign in this case because we are not concerned with 

direction in this problem) ABf
t

B 4=
∆
∆Φ

=E . Up to this point, my 

method and yours coincide. We get a value of 
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Knowing the EMF, we can readily calculate the power 

dissipated. This is given by 
R
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number-obsessed, this is 
( ) WVP 672.

3
42.1 2

=
Ω

=  Of course, since we 

used an average EMF, this is the average power. Power is 
defined as work done divided by the time over which that work 
was done. Since, in this case, the work is done over ¼ of a 
revolution (we could average over a longer interval, but we’d 

get the same answer), we can say W
t

WP 672.== , but the answer 

is a lot more interesting if you save the numbers for the 
end). This can easily be solved for the total work in ¼ cycle, 

to give 
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this is . JsWW 017.025.672. =×=

Now, we use the definition of work: dFW
vv

⋅= , or in words, 
“the work done is the product of the distance traveled while 
the force is acting and the component of the force in the 
direction of that distance.” We once again use an average and 
assume the force acts continuously. The distance traveled is 
the arc shown in the picture above. We are only concerned with 
the force that is along the direction of that arc. The length 

of the arc is m
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== . This is the force which must be exerted 

(on average) by an outside entity to make the loop spin as 
described. 

Since the force found above is acting at the end of a 
“moment arm,” it exerts a torque. Now, examine the definition 
of torque, Fd

vvv ×=τ . Here is a real trap for those who plug 
into formulas blindly: The d

v
 in this formula is not the same 

as the d
v
 in the work formula! In this case, d

v
 is the length 

of the moment arm, not the distance traveled. In fact, it’s 
precisely perpendicular to the distance traveled. Here, we 
have  (we can ignore the direction because (a)we don’t 
care about the direction of the torque in this case, and 
(b)the force will always be perpendicular to the moment arm in 

rd =



this situation). Combining this with the average force found 
above, we find that the average torque is 
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Now is a good time to stick some numbers in. The area of 

the loop is . Inserting the rest of the 
numbers, we get 
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Now, to do it “your” way. Many of you used the formula 
)cos(θτ IAB= . The biggest problem with the use of formulas is 

that we tend to forget how they were arrived at in the first 
place. This leads to embarrassing errors! In this case, the 
torque was found using the force on the wire caused by the 
interaction of the magnetic field and the current in the wire—
this is the same force as we discussed in problems #1 and #4. 
This is BLIF

vvv
×= . As the wire rotates, the flux changes and 

the torque changes because the direction of the force 
experienced by the wire changes relative to the direction the 
wire is moving. (Notice that the actual direction of the force 
doesn’t change until the current flips direction—after ½ 
cycle.) This is the reason for the cosine function in the 
formula above. But we are finding an average value for the 
torque which eliminates the dependence of the torque on θ from 
moment to moment. The average value for )cos(θ  over ¼ cycle is 

π
2
, but any other reasonably estimated value will be almost as 

valid in this context. 

We need to begin by finding the current in the wire. The 
average current can be found from the average EMF using the 
method I showed above. This gives (as stated previously) 

ABf
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=E . Inserting this into Ohm’s law, we get 
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 which can then be substituted, along with our 

approximation for the angular dependence, into the formula for 

torque, giving 
R
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ππ
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22824)cos( =××== , which is 

identical to the result that I got previously. Had you used a 
different averaging method, you would have gotten a slightly 
different result, of course. 



Just for giggles, I did this problem using calculus. In 

this case, the result obtained is 
R

fBA 22πτ = , which isn’t 

terribly different from the result that we obtained here. 

 
2. A sinusoidal electric potential with a peak strength of 120V oscillating at 60 

Hz (i.e., U.S. household current) is applied to solenoid with 1100 windings 
per meter. The total resistance of the wire is Ω7 . The solenoid has an air-
core (i.e., no chunk of metal running down its middle). A single wire loop 
with a diameter of 0.6 cm is placed just outside of the solenoid facing it. 
(Assume the diameter of the solenoid is much greater than that of the wire 
loop.) The resistance of the wire loop is Ω= 3.0R . How much power is 
dissipated by the wire loop? You may consider the average current in the 
loop to be ½ of the peak current. Neglect mutual inductance in this 
problem. 
This is actually a very easy problem except that it must be 

done in multiple steps. I constructed it that way 
intentionally: Many problems, even quite complex ones, are 
readily doable if one attacks them in small enough bites. 

In order to do this, we first need to understand the 
Physics of the problem. This will guide us in figuring out the 
steps to its solution. What’s happening here? Well, a current, 
sinusoidal or otherwise, flowing through a wire will create a 
magnetic field. This is stated by Ampere’s law. Wrapping that 
wire into the shape of a coil creates a solenoid which has a 
very “smooth” magnetic field and one which can be quite 
strong. If the current is time-varying, then so will be the 
magnetic field. A fixed loop of wire outside of the solenoid 
will have that field passing through it and so will have a 
nonzero flux. If the field is time-varying then so will be the 
flux. A time-varying flux, according to Faraday’s law, will 
create an EMF in a loop of wire. That EMF will create a 
current in the loop. The flow of charge in the loop (i.e., the 
current) will cause the energy in it to be dissipated via 
(typically) heating. 

Read all that again a couple of times until you have a 
picture of what’s going on. Now, let’s break down our problem 
solving strategy step by step: 

I. Use the applied voltage and solenoid’s resistance to 
find the current in the solenoid (which will be a 
function of time). 



II. Use the current found and the parameters of the 
solenoid to find the magnetic field of the solenoid. 
This will also be a function of time. 

III. Find the flux through the external loop. Again, this 
will be a function of time. 

IV. Find the rate of change of the flux through the loop 
and set this equal to the EMF. 

V. This step is crucial: Now, we find the time-average 
of the EMF. It’s critical that we don’t do the time 
average until after we’ve found the EMF. If we were 
to do it at an earlier step, we’d obliterate the 
time-dependence of the flux and Faraday’s law would 
predict zero for the EMF, which isn’t true! 

VI. Having found the time averaged EMF, we can use this 
along with the resistance in the loop to find the 
power dissipated. 

Now that we have our strategy, let’s do it. I’ll retain the 
steps laid out above: 

I. 
( ) )120sin(14.17

7
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7
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III. ( ) )120sin(107.6103)120sin(1037.2 7232 tWbmtBAB πππ ××=×××××==Φ −−−  

IV. A bit of explanation is needed on this step. When we 
calculate the rate of change of something, we can ignore 
anything that doesn’t change with time. The only thing in 
this expression that changes with time is the factor 

)sin( tω . We know (because I declared it to you in class—a 

direct revelation from Sinai) that )cos()sin( t
t

t ωωω
=

∆
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 that 

factor of ω  that comes out of the procedure is very 
important! Don’t leave it out! Without it, not only will 
the numeric value of the answer be wrong, the units will 
be totally wrong (webers instead of volts). Using this, we 
have 

)()120cos(1053.2)120cos(120107.6 47 ttVtWb
t

B E=××=×××=
∆
∆Φ −− πππ  



V. Using the averaging method stated in the problem, we can 
just replace )120cos( tπ  with ½. This gives us 

VV
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4
4
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2
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VI. Finally, we have 
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Clearly, this is a tiny number. To get a bigger EMF, we 
could use a bigger loop or, better, a coil with many turns. 

3. The primary coil in a transformer has 1000 windings. The secondary coil in 
the transformer has 37 windings. If a peak potential of 120V at 60 Hz is 
applied to the primary, when the secondary delivers a peak current of 13 A, 
what current will pass through the primary coil? What peak potential will 
appear between the leads of the secondary? 
Easy stuff, here! I don’t recommend that you memorize a 

formula for this—I sure don’t have it memorized. Just remember 
two things: First, power is conserved. This is because energy 
is conserved. Second, the ratio of the voltages will be the 
same as the ratio of the windings between the primary and the 
secondary coils. This is a direct result of Faraday’s law: 
Since the total flux is proportional to the number of windings 
(after all, the B field is the same for both coils and the 
area is the same for both coils, so the flux must be 
proportional to the number of windings), the EMF must, 
likewise, be proportional to the number of windings. Thus we 

must have 
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N
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= . Since the power is given by  on 

both sides, we also know that 
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two, we have 
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Now, we know that VVprimary 120=  and . Also AIsecondary 13=

37
1000

=
secondary

primary

N
N

. Therefore, AAI
N
N

I secondary
primary

secondary
primary 481.13

1000
37

=×== . And 

VVV
N
N

V primary
primary

secondary
secondary 44.4120

1000
37

=×== . This is what would be 

called a “step down” transformer. It takes a high voltage at a 
small current and turns it into a low voltage at a high 
current. 



4. What is the total energy stored in a 17 nF capacitor when fully charged with 
a potential difference of 11V between its faces? Assume the capacitor is 
air-spaced. If this is a parallel-plate capacitor with a separation of 0.01 mm, 
what is the stored energy density? (Yes, this deals with material from 
earlier this semester. Consider this just a reminder.) 
This is just application of a formula (yuck—you know my 

feelings on that!). 2

2
1 CVU = . Substituting numbers, we have 

( ) JVFCVU 6282 1003.111107.1
2
1

2
1 −− ×=×××== . 

To find the energy density, we need to do a little bit of 
work: We’ll need the volume of the capacitor. Since, for a 

parallel plate capacitor, 
d
AC 0ε= . We can use this to solve 

for the area. This is 22
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ε
. (This 

is huge, by the way!) Therefore, the volume of the region 
between the plates is . Using this, the 

energy density is 
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5. Consider again the solenoid described in problem #2. Take the diameter of 
the solenoid to be 2 cm and its length to be 11 cm. What is the maximum 
energy stored in its magnetic field under the conditions described in that 
problem? What is the inductance of the solenoid? 
We must begin by calculating the inductance. The formula 

for this is given in your text and was also derived in class. 
It is . Inserting numbers, we have lrnL 22

0 πµ=

H

mm
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mTlrnL
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×××××
⋅

×== ππµ . 

Now, we just apply another formula for the energy: 2

2
1 LIU = . 

Since the magnetic field varies sinusoidally, so will the 
stored energy (more on that later). However, the peak of the 
stored energy will be found when the current is at a peak. 
From Problem #2, this occurs when AI 14.17= . Thus we have 

( ) JAHLIU 3252 1072.714.171025.5
2
1

2
1 −− ×=×××== . 



6. In words (a sketch or two or three or four might not hurt either!), contrast 
the current flowing through a circuit with an inductor in it and that of a 
circuit with a capacitor in it. Similarly, contrast the induced EMF in an 
inductor with the back EMF of a charging capacitor in a circuit with a 
current flowing in it. 
Inductors fight change. Just keep coming back to that. If 

there is initially no current in an inductor, the current will 
grow slowly until it finally approaches some asymptotic value. 
Once it reaches that current, it will try to stay there. So an 
attempt to turn the current off will also be met with a 
tendency to stay on and the current will keep flowing, 
although it will decay slowly. In the long-time limit, an 
inductor is just a wire—this fact is important! On the other 
hand a capacitor starts out acting like “just a wire.” 
Initially, current flows through the circuit as though the 
capacitor weren’t there and there were just a conductor in its 
place. As it charges up, the capacitor starts to impede the 
flow of additional current, however. Ultimately, the capacitor 
acts like a break in the wire and current slows to an 
arbitrarily small value. The currents through a circuit with 
inductor and one with a capacitor are shown in the plot below. 
Each assumed the same time constant (τ). The inductor’s 
current is shown in green while that for the circuit with a 
capacitor is shown in blue. The 1/e position is indicated with 
the purple horizontal line. 

The induced EMF in an inductor starts out high. It is 

Fractional current through a circuit with a 
capacitor vs. that with an inductor
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cau

 to a solenoid with n windings per meter and a 

sed by a rapid change in current. Since, when we initially 
turn on a circuit, the change is from nothing to something 
(whatever it happens to be), the fractional change is huge so 
the induced EMF is very large. Remember that the induced EMF 
is created by the change in current, not the current itself. 
(This is analogous to recognizing that a force creates a 
change in a velocity, not a velocity.) As the current grows 
and approaches its asymptotic value, the rate at which it 
changes diminishes. Thus, the induced EMF diminishes as the 
current grows. Ultimately, the induced EMF becomes arbitrarily 
small as the current becomes arbitrarily close to its 
asymptotic value. On the other hand, the back EMF of a 
charging capacitor is caused by the accumulation of charge on 
the capacitor. Initially, there is no charge on the capacitor 
so it doesn’t fight the addition of new charge and new charge 
accumulates rapidly. As time passes, the total charge grows 
and so does the back EMF. Ultimately, the potential across the 
capacitor becomes arbitrarily close to the potential of the 
EMF source responsible for charging it. Thus there is no net 
potential difference and so the current slows to an 
arbitrarily small value. 

7. A D.C. potential, V, is applied
total resistance R. The solenoid has a total length L and a diameter D. 
Assume the magnetic field inside the solenoid to be the same everywhere. 
There will be a force exerted on the solenoid by its own magnetic field that 
looks like a pressure. I.e., it is a force distributed over the area of the 
solenoid. Note: The magnetic field inside of a solenoid can be considered 
to be constant both in size and direction everywhere and is in the ẑ±  
direction. (Hint: See problems #5 and #6 of Assignment #10.) 

I. Calculate the magnetic pressure of this system. 
II. Is the pressure outward or inward? 
III. If the solenoid were a container holding a monatomic ideal gas, it 

o

James Clerk Maxwell, who wrote down a self-consistent set 
of

w uld take some amount of mechanical work to create that same net 
pressure. Calculate the mechanical work of a “tin can” with the same 
dimensions as the solenoid needed to create the same pressure in 
the gas. Compare this to the energy stored in the magnetic field of 
the solenoid. What current, I, would be needed to have these 
numbers agree? 

 laws governing the intermingled behaviors of magnetic and 
electric fields, had an interest in Hydrodynamics, the study 
of the flow of fluids, long before he became interested in 
electricity and magnetism. He was fascinated by the 
similarities in the behaviors of mechanical fluids (e.g., 
flowing water) and electromagnetic systems. This fascination 



continues to this day in the vary active field of 
“magnetohydrodynamics.” This question is your first 
introduction to this rich field! 

Recall that the pressure experienced by something due to 
som

verywhere 
ins

e force is the total force divided by the area over which 
that force acts. In this case, we have a force created when 
the current traveling in the solenoid interacts with the 
magnetic field inside the solenoid. That force acts on the 
entire area of the solenoid. So, we have a pressure. 

The magnetic field in the solenoid is the same e
ide of it. This is given by nIB 0µ= . This is exclusively in 

some direction along the z axis, although we don’t know right 
off whether it is +z or –z. In order to figure this out, 
consider that the solenoid is just a series of “rings” of 
current. Pick a direction for the current, we’ll see in a 
moment that, for this problem, it doesn’t matter which 
direction one chooses—clockwise or counter-clockwise. Now use 
the right hand rule to figure out the direction of the field 
just as you did in a previous assignment. Let’s pick 
counterclockwise for now. If the loop is considered to lie in 
the plane of this page, this would put the magnetic field 
pointing in the +z direction. 

We again use the right hand rule to find the force on the 
current-carrying wire using this. The force on a length of 
such wire is given by BLIF

vvv
×= . Now, of course the wire is in 

a loop, so the L vector doesn’t point in a single direction 
(in a Cartesian system). However, think of it this way: We 
know that whenever we have a cross product the resultant 
points in a direction perpendicular to both vectors in the 
product. The L vector will always be tangent to the loop, 
everywhere on it. The B vector is along the axis of the loop. 
The only direction that is perpendicular to both of these is 
along the radius of the loop. This doesn’t tell us whether the 
force is inward or outward, but it does tell us that it is 
radial. To find whether it’s in or out, we use the right hand 
rule. My favorite variation on this rule for BLIF

vvv
×=  is this: 

Point your thumb in the direction of the current. Point your 
fingers in the direction of the magnetic field. The palm of 
your hand will point in the direction of the force. Or, you 
can do it algebraically—but you’ll have to pick a single point 
on the loop and break out the L vector at that point and then 
extrapolate to all other points. (In case you’re wondering 
[and you should be!]: This can all be done quite rigorously by 
introducing a coordinate system consisting of zr ,,θ . Here, r is 
in the radial direction, θ  is along the loop, and z is along 



the axis. This is known as a “cylindrical” coordinate system. 
There are, in fact, 11 different coordinate systems, including 
the Cartesian system that you know about. Picking the right 
coordinate system can make an insoluble problem almost 
trivial. Of course, this means first learning about the 
properties of this assortment of coordinate systems.) 

Using the version of the rule I describe above, you should 
be able to convince yourself that the force experienced by the 
wire is always outward, independent of the direction of the 
current. (If the current reverses, L

v
 reverses but so does B

v
.) 

We now must find the total size of the force. To do this, all 
we need to do is “unwind” the coil. 

The solenoid consists of N  loops, total. Each loop is, to a 
very good approximation, a c rcle. Thus, the circumference of 
each loop is r

i
π2  and the total length of wire is rNL π2= . 

(It’s worth repeating that the thing that allows us to 
“unwind” the solenoid this way is the fact that the force 
experienced by it is outward everywhere. Now, “outward” 
changes direction at each point, so we can’t use vectors here 
without switching coordinate systems as mentioned above. But 
we can use this to calculate the full force acting on the 
wire.) So the total force is rBNIF π2= . And, substituting our 
expression for the magnetic fi nI0eld, B µ= , into this, we have 

nIrNIrBNIF 022 µππ == . The only thing  is to recall that  left

l
Nn = , where l  is the total length of the solenoid. (Sorry 

 the proliferation of quantities represented by the same 
letter! Sometimes it just works out that way.) So we have 

0
222 µπrlInF = . 

about

To find the pressure, we just divide the total force by the 
area over which that force acts. The area in this case is the 
total area of the solenoid. This is rlA π2= . Thus we are left 

with 0
220

222
µ

µπ InrlInFP === . Now we can do some thermodynamics. 
2πrlA

Recall from the ideal gas law TNkPV B=  (don’t be confused 
by  with t the reappearance of a quantity he letter N—this is 
the total number of molecules in a sample of gas, in this 
case). Recall, also, that the total energy per molecule of a 

monatomic ideal gas is given by TkE B
3

= . Thus, the total 
2

energy of a sample of monatomic ideal gas is PVTNkE Btot 2
33

2
== . 



Well, we know that our “ideal gas” has a pressu . 
This is stored in a “tin can” with the volume of the solenoid. 

This volume is lrV 2π= , so we have 

re of 0
22 µInP =

lrInPVEtot
2

0
22

2
3

2
3 πµ== . 

Now remember t is that we’ : 
the energy that would be present in a sample of monatomic 

what i ve just calculated This is 

ideal gas occupying a volume the same as that of the solenoid 
exerting an outward pressure the same as that experienced by 
the solenoid due to the magnetic field interacting with the 
current in the wire that forms the solenoid. Of course, the 
magnetic field has an energy itself, without analogy to an 

ideal gas. This energy is given by 2

2
1 LIU =  where I’ve, once 

again, used a letter to mean somet different just to 
confuse you (really, I didn’t—sometimes things just work out 
this way; if we were truly being careful, we’d relabel things 
so that there’d be some way to distinguish). Here, 

hing 

L  is the 
inductance of the solenoid. Well, we know the inductance of a 
solenoid. It is lrnL 22

0 πµ= . Thus the total energy in the 

solenoid is 
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I think this is a really cool result (of course, I’ve got 
the job that I have because I think all sorts of weird things 
are cool—this is a way of keeping folks like me off the 
streets without filling up the jails): If we send a current 
down the wire of a solenoid, there will be an outward force 
created on the solenoid. This force acts like there’s 
something “trapped” in the solenoid that’s trying to escape 
and that some amount of work would have had to be done to get 
it there. Creating this much pressure mechanically would take 
three times as much work as creating the same situation in a 
purely electromagnetic way. One point that this drives home is 
that giving the endpoint of a system (in this case, the fact 
that the solenoid experiences an outward pressure) does not 
give all the information needed to know how much energy went 
into getting it there. 


