
Physics 206b 
Homework Assignment X—partial (Problem #3 solution is not yet complete. 

I will post a final version of this solution set once that is done.) 
SOLUTIONS 

 
Some important properties of the cross product for your reference: 
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1. Consider a circular loop of wire in the plane of this sheet of paper 
(or, at least, the one you’re writing your solutions on). If a constant 
current is flowing in the wire going clockwise, use Ampere’s law and 
the Right Hand Rule to determine the direction of the magnetic field 
inside the circle and outside of the circle. Make a sketch showing 
this. 

This one is really tough to draw and almost as tough to 
describe, but it’s actually quite easy. Think about it this 
way: Ampere’s law says that the magnetic field will make 
circles around any given length of wire. That is, given a 
tiny piece of wire with a current flowing in it, the 
magnetic field will be constant in size at any point a 
given distance away from the wire. The field will “look 
like” a series of circles around the little piece of wire. 
Since the field is a vector, we also need to specify the 
direction of it. To find this, imagine grabbing the wire 
with your right hand and laying your thumb along the wire 
pointed in the direction of the current. With your fingers 
so wrapped around the wire, your fingertips will point in 
the direction of the field. 

Now, a circle of wire is just a whole bunch of little, 
straight segments of wire—or, at least you can visualize it 
that way. So imagine grabbing a wire loop with your right 
hand with your thumb pointed so that it is pointed 
“clockwise.” If you hold it so that your fingers are on the 
inside of the circle, they will point into the page 
(assuming, as stated in the problem that the loop lies in 
the plane of the page). If you hold it so that your fingers 



are outside of the circle, your fingers will point out of 
the page. 

Thus, the field would be: 

Note one very important thing: As drawn here, the field 
seems to be of constant strength everywhere, just of 
different sign inside and outside the wire loop. This is 
not the case! The strength of the field varies as one’s 
distance from the wire loop changes, both inside and 
outside of it. I just can’t draw that well. Don’t be 
misled! 

Arrows indicate 
direction of current 

 
2. An electron is accelerated to a velocity vv  by passage through a 

potential difference of 589 V (consider its initial velocity to be zero). It 
then enters a region occupied by a constant magnetic field of 
magnitude 1.7 T with a direction perpendicular to the velocity. What 
is the radius of the circular path its trajectory will take? Choose 
directions for the velocity vector of the electron just prior to entering 
the magnetic field and the magnetic field vector. Sketch the vectors 
and indicate the path the electron will take after entering the field. 

 

You may have noticed that I’m ramping-up the complexity 
of your problems. This is intentional. I’m not making them 
more difficult, necessarily, but I am consciously 
increasing the number of steps you’ll need to put in to 
solve them. Your problem solving skills are maturing 
enough, at this point, that you will benefit from the added 
push. (You’re welcome!) 

To solve this problem, we’ll need to go through a minimum 
of two steps, but first let’s see what the Physics says 
will happen qualitatively. The electron passes through a 
potential difference. This means that its potential energy 
changes. Since this is a conservative system (i.e., no 



energy leaves the system) a change in potential energy must 
show up as an equivalent change in kinetic energy. I.e., 
the electron’s speed changes—in this case, it increases. It 
then enters a magnetic field. A magnetic field does no work 
on a moving charge! It applies a force that is always 
perpendicular to the velocity of the charge. This means 
that it cannot change the energy of the charge. Which, in 
turn, means that it cannot change the speed of the charge. 
All it can change is the direction the charged object 
travels. Since the magnetic field is, in this case, 
perpendicular to the velocity and of constant magnitude, we 
have a situation in which the object will experience a 
constant acceleration which is always perpendicular to its 
velocity. This is precisely the recipe for circular motion, 
so the particle will travel in a circle after entering the 
magnetic field. 

Now let’s do it quantitatively, starting with finding the 
speed of the electron. Invoking conservation of energy, we 

have 2

2
1 mvVq =∆ . (Note that this is true only because our 

initial K.E. is zero; otherwise, we would have had to use a 
change in K.E.). This gives 
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. However, I implore 

you not to use the numerical answer at this point! It’s 
always a good policy to save plugging in numbers until the 
very end. 

Now, we know the electron will travel in a circle. The 
relationship between the centripetal force and the speed of 

an object traveling in a circle is 
r

mvFc

2

= . The force a 

magnetic field exerts on a moving charge is given by 
BvqFm

vvv
×= . In this case, since we know that the velocity and 

the magnetic field are perpendicular to each other, we can 
ignore the vector nature of the cross product (this won’t 
always be true!) and put the direction of the final vector 
in by hand later. This allows us to write qvBFm =  (note that 
by doing this we can also ignore the sign on the charge for 
now—we’ll need to remember to put it in later!). Since this 

is the centripetal force, we can write 
r
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readily be solved for r to give 
qB
mvr = . We can now 



substitute for the speed and we have 2
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Now we substitute the numbers and get 
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Since we are free to choose the direction of the electron 
initially, let’s pick it’s velocity to be in the  
direction. We are also free to pick the direction of the B 
field, so long as it is perpendicular to the electron’s 
velocity. So, if we draw our x axis to the right, as seen 
on this page, let’s pick the B field to be out of the page. 
This is the  direction. Sketching this, we have: 

x̂

ẑ

Now, here is where I have to confess to a little fib 
which some of you (I hope!) may have picked up on: The 
symmetry of the problem is such that the electron can’t 
stay in the magnetic field, assuming that the region starts 
abruptly. In this case, the electron can only make a 
semicircle and then it will leave. If you didn’t notice 
this, that’s fine, I didn’t want you to. But if you did, I 
apologize for any confusion and congratulate you on having 
the picture right! So I really should draw: 
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electron’s path



 

(The semicircle here is just half of the circle discussed 
earlier.) 

initialvv

initialF
v

electron’s path

Anyway, the direction of the force can be found by the 
right hand rule. Remember to include the – sign for the 
electron, however! Another way to find it is to us the 
vector relations directly. Remember that we’re only going 
to find the initial force, which will be based on the 
initial velocity. Once the force has acted on the electron, 
the direction of the velocity will change. Since the force 
is always perpendicular to the velocity, once the velocity 
changes, the force also changes, and so on. 

Using the force law, BvqFm

vvv
×= , we can find the direction 

(which is all we care about now—we already found the size) 
by rewriting this without sizes for any of the vectors. 
I’ll indicate the vector in the direction of mF

v
 but without 

its size in the usual way, as . Thus we have  
(note the – sign for the electron). This is (no surprise) 
the same as we found using the right hand rule. Of course, 
you may have picked different directions than I did for the 
velocity and B field, so your answer may be different. 

F̂ yzxF ˆˆˆˆ =×−=

 

3. In a mass spectrometer, a molecular ion is accelerated through a 
potential difference of 400 V. Assume the ion is singly-ionized 
glucose (C6H12O6)—i.e., one of its electrons has been removed. The 
ion then travels in the  direction through a constant magnetic field 
of 300 G oriented in the  direction. The region with the magnetic 
field is between the plates of a parallel-plate capacitor with a 
separation of 1 cm oriented in the  direction. What potential 
difference needs to be placed across the plates of the capacitor if the 
ion is to emerge from this “Wien filter” undeflected? 
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ẑ



I’m still working on the solution to Problem #3 and will post a final version of this 
solution set once this is done.  

4. Consider again the electron in the previous problem. Now assume 
that there is an electric field parallel to the magnetic field and pointed 
in the same direction as the magnetic field. What electric field 
strength is necessary so that on its first “cycle” in the magnetic field 
the electron travels as far vertically as it does horizontally? (Take 
“vertical” to mean “parallel to the two fields” and “horizontally” to 
mean “in the plane perpendicular to the two fields.”) This is a tough 
problem and you’ll have to reach way back in your bag of tricks to do 
it! 

Alrighty, now for the tough one. Let’s continue to assume 
that the electron is able to make a full circle in the 
magnetic field. (This could be accomplished by having the 
magnetic field instantaneously turn on rather than having 
the charge enter the field directly—but I don’t want to 
confuse things more than necessary.) The total force on the 
electron is given by the Lorentz force law: ( )BvEqF

vvvv
×+=  

where E
v
 is the electric field. Did you see what happened 

there? I took the magnetic force that we discussed in the 
previous problem and simply added it to the force due to an 
electric field that we discussed in previous assignments. 
One place where many of you made life difficult for 
yourselves, I’m sure, is by assuming something incorrect 
about the electric field. You made an assumption that the 
field was caused by a point charge. This was not stated in 
the problem and, indeed, is not consistent with the problem 
as stated! E

v
 is simply E

v
. That’s all it is. Just remember 

that the electric field at a point in space is defined to 
be the force that a 1 coulomb positive charge would 
experience if it were placed at that location in space. 

Now, here’s the nastiness: The electric field and the 
magnetic field are parallel to each other. But the forces 
exerted by those fields are perpendicular to each other. 
This is because the force exerted by the electric field is 
in the direction of the electric field while the force 
exerted by the magnetic field is always perpendicular to 
the magnetic field. (You might wonder why we didn’t just 
come up with a different definition of the magnetic field 
that would allow it to be parallel to the force that it 
exerts. Unfortunately, the magnetic force depends on the 
velocity of the object as well as the magnetic field. We 
can’t come up with a definition of the field that would 
make the force parallel to the field and still take this 
dependence on velocity into account. So we have to live 
with this little confusion.) 



But this problem is a saving grace, in this case, if we 
remember a profoundly important fact from last semester: 
Vectors which act perpendicularly to each other act 
independently of each other! Since the E field and the B 
field are parallel to each other, by definition their 
respective forces will be perpendicular to each other. Thus 
it is sufficient for us to consider each of these forces 
separately and then add their effects. 

We’ve already figured out the effect of the magnetic 
field: It will result in the electron traveling in a 
circle. Now, recall that the electric field points in the 
direction of the force that would be experienced by a 
positive charge were it placed at that location in the 
field. Since an electron has a negative charge, the force 
on the electron will be in a direction opposite to that of 
the field. The electric field will result in the electron 
accelerating in the  direction, therefore. ẑ−

If we have an object traveling in a circle in the x-y 
plane while accelerating in the ẑ−  direction, the result 
will be a spiral, like a screw. In fact, since the electron 
is accelerating in the ẑ−  direction, the “pitch” of the 
screw will continuously increase: It will travel farther in 
“vertically” with each revolution. But we’re not concerned 
with that here. What we care about in this case is only 
what it does on its first cycle. 

In once cycle, the electron will travel horizontally a 
distance rd π2= , where the radius is what we found in the 
previous problem: . This gives 

. We use this as the distance 
it travels vertically, per the statement of the problem. We 
also know how long it takes for this motion to happen: 
Since we know the horizontal speed of the electron (the  
and  pieces, which are unaffected by electric field and 
the sum of which remains unchanged through the whole 
process), we can just divide the distance found above by 
this speed to find the time it took to travel that 

distance. This gives 
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the reciprocal of an important quantity known as the 
“cyclotron frequency.”) 

Now, it’s crucial to notice that the electron is 
traveling this distance under a constant acceleration. Last 
semester, we exhaustively studied the behavior of objects 



undergoing constant accelerations. Among the most important 
equations we used in that study was 2

2
1 atd = . We now know the 

distance our electron has traveled (in the direction of 
interest) and the time it took to travel that distance. 
Using these facts, we can easily find the acceleration: 

2

2
t
da = . We also know the relationship between the 

acceleration of the object and the force acting on it: 
amF vv

= . Since the force in the direction of interest here is 
just that due to the electric field, qEF =  (ignoring 

directions for now), we can easily write 2

2
t
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can be solved readily for E to give 2

2
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Now, it’s just a matter of substituting numbers. We have 
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5. A length of wire has a linear mass density of 
meter
grams8.7=µ . You wish 

to suspend a length of such a wire in midair (i.e., against the pull of 
gravity) by flowing a current through it while applying an external 
magnetic field to it. What direction does the magnetic field need to 
point to make this happen? Given this, what direction does the 
current need to travel? Make a sketch! What size current is needed if 
the external magnetic field is 41 milliteslas? 

This is very straightforward to solve, once you have the 
geometry in mind. The force on a current carrying wire in a 
magnetic field is given by BLIF

vvv
×= . This is basically just 

an extension of the Lorentz force law ( BvqF
vvv

×= ) that sums 
the forces on all of the moving charges in a wire. Getting 
the directions is the hardest part. In this case, we know 
that the force must act “up” in order to counteract gravity 
Let’s call that the  direction. Unfortunately, we can’t 
just divide the equation to get an answer for the rest. One 
very strict rule is that you cannot divide by a vector! You 
can divide by the magnitude of a vector, but the 
directional feature must not be included. So we have to use 
reasoning, rather than just algebra, to find the direction 
of the other two vectors in the problem. 

ŷ



Because of the nature of the force equation above, we 
know that the force must be perpendicular to both the 
magnetic field and the wire itself. We do not need to have 
the wire perpendicular to the field to make this happen, 
but the force will be maximized if it is since 

)sin(θLBBL =×
vv

. (The absolute value bars, , mean “the size 

of” the vector enclosed.) So our lives will be easier if we 
pick things this way. If we choose differently, all that 
will change is that we’ll have to tote around that )sin(θ  
term. It will still be true that the final vector will be 
perpendicular to both of the vectors in the cross product. 

Using this, let’s pick the length vector to lie in the  
direction. If we pick the  to be “up” on this sheet of 
paper, this will put the  direction to the right. So we 
will have 
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v
: 

Since B
v
 must be perpendicular to L

v
, its direction can be 

any combination of  and . If we’re sensible and pick the 
direction to maximize the force, then the only possible 
direction remaining is the  direction (although it might 
be , we won’t know until we do the math). Just out of a 
sense of perversity, I’m going to do this the hard way for 
you. For absolutely no good reason, I’ll pick the 

x̂ ẑ
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 field 

to be pointed at an angle of 13° relative to the  
direction. This gives 

x̂
( )( )( )zxBB ˆ13sinˆ13cos °+°=

v
. Let’s see what 

this gives us: ( ) ( )( )[ ] ( )yILBzxxILBBLIF ˆ13sinˆ13sinˆ13cosˆ °−=°+°×=×=
vvv

. As 
expected, our )sin(θ  factor is tagging along. Also, we’ve 
wound up with a negative sign in front of it all. Since the 
final force must be in the ŷ+  direction, this just means 
that our choice of direction for the current was backwards, 
as I stated it might be. 

↑F
v

→L
v

wire 

A judicious use of the right hand rule would have told us 
this without doing any math. A variation on the right hand 
rule exclusively for the force on a current-carrying wire 
is this: Using your right hand (duh), point your thumb in 
the direction of the L

v
 vector (the direction the current is 

flowing along the wire). Point the fingers in the direction 



of the B
v
 field. The palm of your hand will point in the 

direction of the force. I like this one because of the 
evocative nature of the palm pushing on the wire! 

We’re almost done. (We would have been done a while ago 
if I hadn’t decided to do this the hard way!) Now we need 
the size of the vector. What is ? Well, remember that 
we’re pushing against gravity. The force of gravity on the 
wire is . But what is the mass? Well, the mass can be 
found from the linear density and the length 

F

mgF =
Lm µ= . This 

gives us LgmgF µ== . Thus, we can write ( ) LgILB µ=°13sin . The 
length drops out (think about why this is so) and, solving 

for the current, we have ( )°=
13sinB
gI µ

. (Of course, you will 

probably not have that )sin(θ  term in there.) Sticking in 

some numbers, we have ( ) A
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course, if you’d been sensible and chosen °= 90θ , this would 

be A
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direction for a B
v
 field out of the page ( ẑ+  direction) or 

in the  direction for a x̂ B
v
 field into the page ( ẑ−  

direction). 

 
6. Two 1.4 m long wires oriented vertically and parallel to each other 

are separated by a distance of 7 cm. A current of 3 amperes flows 
through each of them. In both wires, the current flows from bottom to 
top. What is the size and direction of the force experienced by each 
wire due to this? If the direction of both currents is reversed, does 
this change? What about if the current in one of the two wires is 
reversed? (I.e., if one of them is flowing top-to-bottom while the other 
is flowing bottom-to-top.) Hint: Use Ampere’s law. 

This is a very easy problem if you avoid falling into a 
very common trap: Many of you are still confusing the field 
that something (a charge, a current, a magnet, etc.) 
experiences with the field that it creates. We have two 
wires. Each one carries a current. That means two, 
distinct, totally separate things: First, it means that 
each one will experience a force if it is in a location 
with a magnetic field pointed in any direction other than 
parallel to the wire. Second, it means that each one will 



create a magnetic field. These two facts have nothing to do 
with each other! 

Realizing this, we recognize that, to find the force on 
one wire, we must find the field created by the other wire. 
The wires and fields are indicated in this picture for 
currents both flowing from bottom to top: 

Notice that the B
v
 fields (found via the right hand rule) 

for each of the wires are the same. However, since the wire 
on the right is to the right of the wire on the left and 
the wire on the left is to the left of the wire on the 
right (duh), the wires each encounters a field opposite to 
that encountered by the other one. The wire on the left 
encounters a field pointed out of the page ( ẑ+  direction) 
while the wire on the right encounters a field pointed into 
the page (  direction). Since the currents are each in the 
same direction, the total force encountered by each wire 
will be in the opposite direction. (You will also note that 
this is demanded by Newton’s third law.) 

ẑ−

RL 

To deal with this mathematically, we’ll need the size of 
the B

v
 fields. Fortunately, the long, straight wire is one 

of the problems which can be solved using Ampere’s law. 

Ampere’s law gives 
r
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π
µ
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0= . This is the magnitude of the 

field due to a long, straight wire carrying a current I a 
distance r from the wire. The direction is found, as stated 
above, by the right hand rule. Since in this problem we are 



only interested in the field a distance of  from 
the wire, we will use a value of 
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We find the total force on each wire by using the 
relation BLIF

vvv
×=  (I usually prefer to consider the current 

as a vector and the wire’s length as a scalar, but most 
books write it this way, so I’ll stick with the standard; 
it makes no difference in the end). For the wire on the 
right, we have (as previously, using asterisks to denote 
scalar multiplication for clarity): 

( ) ( )( ) xNNzyzTymABLIFR ˆ106.3ˆˆ106.3ˆ1057.8ˆ4.13 556 −−− ∗−=−×∗=−×∗∗=×=
vvv

. 

As noted above, the only difference for the wire on the 
left will be the sign on the direction of the magnetic 
field it encounters. Thus, the only difference in the force 
will be a sign. We will have:  

xNFL ˆ106.3 5−∗=
v

 

So, the wire on the right will experience a force to the 
left and the wire on the left will experience a force to 
the right. The result is that the wires will attract each 
other. 

Clearly, if the direction of both currents is reversed 
nothing changes, overall: The sign on B

v
 changes in both 

cases, but so does the sign on L
v
. The result is that 

nothing changes. 

Now, if the current on only one of the wires is reversed, 
both forces will change sign. In one case the sign change 
is because the B

v
 field changes sign and in the other case 

the sign will change because L
v
 changes sign. The result 

will be that the wires will repel each other in this case. 

In all three cases discussed, the magnitude of the force 
is the same. 

 
7. Write down, in words, Faraday’s Law. 
Qualitatively first: Faraday’s law says that a time-

varying magnetic flux passing through a closed loop of wire 
or, indeed, any closed loop in space, whether there’s 
anything there or not, will result in an EMF if there’s a 
conductor there or an E-field if not. 



Stated mathematically: 
t

B

∆
∆Φ

=−E . 

Stated operationally: If you have a closed loop made out 
of a conductor (or a closed region of space—but we haven’t 
worked with that yet; we will! but let’s ignore the 
possibility for now) and, for whatever reason, the magnetic 
flux through that loop changes with time, find the flux as 
a function of time. Find how it varies with time. The EMF 
will be just the change in flux divided by the time over 
which that change occurs. This will cause a current to flow 
in a conductor, if possible. 

(Combining these last two: Once the current is caused to 
flow by the changing magnetic flux, Ampere’s law says that 
a magnetic field will be created. This field may very well 
interact with the very field that caused the current to 
flow in the first place. This is “inductance.” That’s for 
the next assignment.) 

 


