
Physics 206a 
HOMEWORK #9 

SOLUTIONS 
(Because of the large amount of algebra in Problem #2, this is only a preliminary 

solution set. This set contains the solution of Problem #2 for the special case that the two 
masses are the same—this is not the situation in the problem as stated. I will post a 
complete solution, which covers the condition for the two masses as given, once I’ve 

finished typing up the algebra.) 
 
 

1. A billiard ball whose mass is 300 grams and whose velocity is 

x̂
second
meters5  strikes another ball. The second ball is at rest, initially. The 

impact is perfectly elastic. The collision is “head on,” i.e., this is a 
one-dimensional problem. Find the velocity of the both balls after the 
collision if: 

a. The mass of the second ball is 250 grams. 
b. The mass of the second ball is 300 grams. 
c. The mass of the second ball is 350 grams. 

Here’s where those of you who obsess on numbers will get your 
comeuppance! If you do the general case, treating the masses as symbols, you 
only have to do the problem once, only plugging in numbers at the end. If you 
insist on sticking numbers in there early on, you have to do the same problem 
three times. Me, I’m lazy. I’d rather do it once. 

Once again, we start by stating everything we know: We know the masses of 
the balls. We know the initial speeds. We also know that the collision will be 
head-on, so this is a 1-d problem. Most importantly, we know that momentum is 
conserved, because it’s always conserved. And we know that K.E. is conserved 
because we are told that the interaction is perfectly elastic. 

We write the condition for conservation of momentum as , where, 
again, I’ve left the vector symbol off because we’re working in 1-d. (Feel free to 
include vector attributes explicitly even in 1-d: It’s not wrong, it’s just not 
absolutely essential.) We can rewrite this as 
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Our condition for conservation of energy can be written similarly 
. Rewriting this with the full expressions for K.E., we have fi EKEK .... =

2
222

12
112

12
12

1
ffi vmvmvm += . Since a factor of ½ occurs in every term of this, I’ll 

just divide through, for convenience, and rewrite this as . 2
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So, we have two equations and two unknowns. That’s enough to start 
working. Let’s rewrite the set of equations cleanly, so we know where we are: 



2
22

2
11

2
1

22111

ffi

ffi

vmvmvm

vmvmvm

+=

+=
 

Now, I’ll square the first of these and divide through by . (Sorry for 
combining steps, but it will just be too painful to include every step!) This gives 
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term, called the “cross term” came from. It’s frequently left out in a common 
error.) Now, the left hand sides of the two expressions (the square of the 
momentum equation and the K.E. equation) are the same, so I can set the right 

hand sides equal to each other. ffffff vvmv
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Now, I cancel the  term that occurs on both sides of the “=” sign and note 

that all the remaining terms have a factor of  in them, so I divide through 

by that quantity. This gives 
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collecting terms. We get 
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with this in the case that 21 mm = !). 

Going back to our momentum conservation expression, we have 
 so we substitute the above expression for  into this and 

get 
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fi . From here it’s just a bit of algebra (give it a shot for 

yourself) to get ⎟⎟
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should solve this for the final speed of the first ball, which is ⎟⎟
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We’re not quite there yet. We also need the speed of the second ball. But we have 



a relation for the second ball in terms of the first: 
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substitute in to this to get 
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Before we go sticking numbers in, let’s interpret these. Note that when the 
two masses are the same, the first ball will stop and the second ball will emerge 
with the same speed as the first ball. When the first ball is more massive than the 
second ball, the first ball emerges with a speed that is positive and the second ball 
also emerges with a positive speed, so they will travel in the same direction. 
When the first ball is less massive than the second ball, it will emerge from the 
collision with a negative speed, which means it will be traveling backwards! The 
second ball will emerge with a positive speed, which means it will move in the 
direction the first ball originally was moving. 

Now we can stick numbers in: 

i. Taking kgm 3.01 =  and kgm 25.02 =  we have 
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ii. Taking kgm 3.01 =  and kgm 3.02 =  we have 
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iii. Taking kgm 3.01 =  and kgm 35.02 =  we have 
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2. Consider once again the billiard balls in the previous problem. Now, 
the second ball’s mass is 350 grams. Once again, the impact is 
perfectly elastic, the second ball is initially at rest, and the first ball’s 

velocity is x̂
second
meters5 . But now the impact is not head-on. The first 

ball’s velocity after the collision is directed 27° from the x axis. Now, 
what are the velocities of the two balls? 

As stated above, getting the algebra for this typed up is taking me a while—
I’ll get it to you as soon as it’s done. But, for the time being, let’s work out the 
special case in which the two masses are the same. In this case, a crucial principle 

holds: The angle between the trajectories of the two balls will be 
2
π  radians, i.e., 

90°. We have the situation pictured below. 

Using this, we see that °= 632θ . (Or –63° depending on how you include 
signs. I’ll call it a positive quantity and just make sure to put the negative in in the 
right place.) Now we can invoke conservation of momentum, as before. In this 
case, we have two dimensions to worry about. But we also have two unknowns: v1 
and v2. Each direction (x and y) will provide one equation, so we’ll have two 
equations and two unknowns. Perfect! (Note: We also have conservation of 
energy. The result that the sum of the two angles is 90° was gotten via the 
conservation of energy expression, so this has already been used “behind the 
scenes.”) 

Since the original momentum was purely in the x direction, we know that 
the sum of the momenta in the y direction after the collision must be zero. Thus 
we can write 0)sin()sin( 2211 =− θθ vv . (Note that I put in the minus sign by hand 
here. If I’d used –63° before, I’d have used a plus sign.) This gives us 
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Now, we also know that the sum of the x components of the momenta after 
the collision is equal to the original momentum, which lay completely in the x 
direction. So we can write ivvv =+ )cos()cos( 2211 θθ . (Note that I’ve just left the 
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mass out of everything. Since there’s a factor of m in every term, it just divides 
out. Again: This is only possible because the two masses are the same! This is a 
very different problem if the masses are different.) Substituting in our expression 

for , we have 2v ivvv =+ )cos(
)sin(
)sin()cos( 2
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θ . You really could just plug in 

numbers here, but this can be made a lot prettier with some algebra. Let’s get a 
common denominator and add fractions: 
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We now use the trig relationship (I gave you this in class): 
 for any angle. So, we’re left with 1)(cos)(sin 22 =+ θθ
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Using this and the relation we found earlier )sin(
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get 
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the angles given earlier. 

Once again, this solution was worked out for a case that was not assigned! 
I’ll get the real solution to you soon. 



3. One more time for the billiard balls. Now, the balls hit head on. They 

have the same mass. The initial velocity of the first ball is x̂
second
meters5  

and the second ball is at rest. But now someone has coated the 
second ball with a layer of glue so that the balls stick together (no, 
they don’t stick to the table!). What is the velocity of the pair after 
impact? 

You did this in lab, so it should be very familiar to you. We just need to use 
conservation of momentum: fi pp vv = . In words: The momentum of the system 
(which, in this case, consists of the two balls) after the collision is the same as the 
momentum of the system before the collision. Since the balls stick, kinetic energy 
is not conserved, so we cannot use conservation of energy. However, again 
because the balls stick, we have one less variable than we would if they’d 
bounced: The velocities of the two balls are the same. Indeed, since we are always 
free to orient the coordinate system any way we’d like, we can put the x axis 
along the velocity vector of the initial momentum. In this particular problem, this 
has already been done for you, but it could be done in any problem like this. 

Writing this out explicitly, we have xgramsvmp ii ˆ
second
meters53001 ×== vv  and 

fff vgramsgramsvmmp vvv ×+=+= )300300()( 21 . Setting these equal to each 
other, we have ffii vmmpvmp vvvv )( 211 +=== . This can easily be solved for the 

final velocity by dividing, so we wind up with 
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It is a worthwhile exercise to see how the kinetic energy changed. You 
should be able to show for yourself that the final kinetic energy is only half of the 
original kinetic energy, in this case. 50% of the kinetic energy was lost. 

Notice that the fraction of energy lost depends only on the ratio of the 
masses and the original speed. It does not depend on the mechanism that causes 
the sticking. That’s a rather counter-intuitive fact! 

 



4. A cannon shoots a cannonball at 
second
meters200  at an angle 30 degrees 

above the horizontal (i.e., pointed up 30 degrees). Two seconds after 
being shot, the cannonball explodes into two, equally sized pieces—
call them “A” and “B”. Relative to the original cannonball at the 

instant of the explosion, piece “A” has a velocity of 
second
meters100  

exactly horizontal. How long after the original cannonball is shot will 
piece “A” hit the ground? If the cannon is at 0=x , what is the x 
coordinate where piece “A” will hit the ground? 

Contrary to what’s shown in all the cartoons and movies you’ve every seen, 
when something breaks apart (or, more dramatically, explodes), its momentum 
does not change. However, each piece of the object gains some new, additional 
momentum. If we were to add up all of the momenta of all of the fragments, they 
would sum to the original momentum of the thing that broke. I.e., the sum of all 
of the additional momenta is zero! 

Think of it this way: When the cannonball is shot out of the cannon, it 
begins moving along some trajectory. That trajectory is fixed unless some 
external force acts on the cannonball that wasn’t present initially (gravity was 
there in the first place and acts on all the pieces). If the cannonball explodes, the 
force of the explosion is an internal force—it comes from the cannonball, not 
some external entity. So all of the pieces that result from the explosion will 
continue to move along the cannonball’s original trajectory. Each piece will retain 
the original cannonball’s velocity and will be subject to the same accelerations 
due to gravity as the original cannonball. (Now, if we were to include external 
forces which were different for each fragment, things wouldn’t work out so 
neatly. For example, if we included air resistance, each fragment would 
experience a different external force and so each fragment would have to be 
analyzed separately. Each piece would still emerge from the explosion with the 
original velocity of the cannonball plus some piece. But we’d have to analyze the 
new trajectories much more carefully.) 

This presents us with a straightforward strategy for solving this problem: 
We will determine the velocity of the full cannonball at the moment of the 
explosion and then add the new velocity to it to determine the trajectory of the 
fragment. 

Notice that we can answer the first part of the question immediately: Since 
the fragment’s additional velocity is exclusively in the x direction (horizontal), the 
time before it hits will be unaffected by the change in velocity. (Make sure you 
understand that last sentence!) So let’s figure out what that time is. We use our 
standard method: We begin by breaking the initial vector up into two components 

that are perpendicular to each other. Since 
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expressed the angle, 30° in radians (get used to it). This gives 
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Now, let’s figure out where this thing is two seconds after being shot. Let’s 
find its position (both x and y) and its velocity. We use 00

2
2
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each component. (Careful: There’s a  in there that’s different from —the  
is the original speed of each component, not the total original speed.) Let’s do the 
y component first. Here we have 
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Note carefully the sign used for the initial speed and the acceleration: The initial 
speed is up and the acceleration due to gravity is down, so the signs are opposite! 
The position along the x direction is even easier since there is no acceleration in 

that direction, we just have meters346.4seconds2
second
meters2.173 =×=x . 

Now, the x component of the velocity is unchanged by gravity. The y 
component of the velocity is simply 
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(Confusion alert: That 
second
meters100  comes from taking the y component of 

the original velocity. Don’t confuse it with the 
second
meters100  gained by the 

fragment in the x direction when the cannonball explodes!) We now know where 
the cannonball will be when it explodes and what its velocity is at that instant. 
Both of these will be the same for fragment “A” as for the entire cannonball in the 
instant prior to the explosion. In the instant after the explosion, the position of 
fragment “A” will be unchanged, but its velocity will be different. The x 

component of its velocity will be 
second
meters100  greater than it was. Thus 
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Now, we’ll need to know how long it takes the ball to hit the ground. This 
can be found from 00

2
2
1 stvats ++= . It is important to realize that, since the y 

component of the velocity is unaffected by the explosion in this case, we could 
have figured this out right at the beginning. However, one can imagine, quite 
easily, a very similar problem in which some fraction of the change in velocity is 
in the y direction. So let’s do this the hard way. The position and velocity of the 



fragment immediately after the explosion define a brand new problem. The best 
way to solve the full problem is to treat it as two problems: One to figure out 
everything about the cannonball between being shot out of the cannon and 
exploding and the other two figure out things subsequent to the explosion. With 
this in mind, we figure out how long before the fragment hits the ground: 
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2
1 =++= stvats . Where did the 0 come from? That’s the y position of the 

fragment when it hits the ground! We use the quadratic formula to figure out the 
time when this happens. (Note: I’ve noticed that a disturbing fraction of you either 
don’t know when to use the quadratic formula or don’t know how to use it. Come 

see me if in doubt about this.) This gives
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This gives us two “roots”—two possible answers for t. We’ll need to 
discriminate between them. First, let’s take the “-“ sign’s root. This gives 

. Of course it does! This is the time that the cannonball was 
originally shot! We solved for the times at which the height of the cannonball is 
zero. One of those times is when it is originally shot. This had better come as no 
surprise! The other root should be what we want. This is 

seconds2−=t

seconds41.18=t . 

Now, we use the time we just found to locate the x position of the impact. 
This is again found using 00

2
2
1 stvats ++=  with the values found after the 

explosion. Here we have (using the fact that the x acceleration is zero) 
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5. A “ballistic pendulum” is a low-tech way of determining the speed of 
a bullet. This is pictured below. A bullet traveling exactly horizontally 
strikes a log hanging from a pair of long strings and embeds itself in 
the log. The mass of the bullet is 20 grams. The mass of the log is 10 
kg. The strings are 2 meters long. If the speed of the bullet is 

second
meters500 , how high will the log rise? (Hint: The kinetic energy of 

the bullet is not conserved. Find the momentum of the log after 
impact and then use conservation of energy for the log to find its 
height.) This is a terrific example in which K.E. is not conserved but 
momentum is. 

Again, this is a problem that has two “phases”—two distinct regimes: The 
time before the impact of the bullet and the time after it strikes the log. The 
kinetic energy of the bullet is not conserved between these two phases. This is an 
inelastic collision. However, the momentum of the bullet is conserved. Also, the 
kinetic energy of the log after the collision, in the time in which it is swinging up 
to its new height, is conserved. Be sure you recognize the distinction between 
these two regimes! (Note that the momentum of the log+bullet system is not 
conserved in this second phase. This is because of the strings—the Earth would 
need to be considered part of the system if we wanted to use conservation of 
momentum after the log begins to move.) 

The condition of conservation of momentum is fi pp vv = —the initial 
momentum of the entire system before the impact is equal to the momentum of 
the entire system after the impact. I’ll treat the momentum of the bullet as a scalar 

Bullet
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Log 
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Log’s original 
position 

Log 
(after impact) 



since this is a one-dimensional problem. The total momentum before the impact is 

just that of the bullet: 
second

meterskg10
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=×=ip . 

The momentum after the impact is logbulletlogf vmmp ×+= )( . Normally, I’d 
just use the mass of the log in this: The bullet changes the mass by only .02%. 
But, for completeness, I’ll leave it in. I’d recommend neglecting it, however. We 
can use this with the momentum conservation condition to solve for the speed of 

the log. This is 
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try to avoid giving you questions with answers like this—having it just come out 
to “1” really tends to obscure crucial information. It makes the problem seem too 
pat.) 

But this doesn’t answer the question we were asked. Imagine a real world 
situation: If you’re actually trying to use this device (and they really are used), 
you’d be left trying to measure the speed of the log immediately after the impact. 
Since the log is swinging on its ropes, it will start “decelerating” (yuck!) right 
away, so your measurement wouldn’t be very good. On the other hand, you could 
quite easily measure the final height of the log as it swung. So, let’s figure out 
what that is. For this, we use conservation of energy. 

Let’s take the zero of potential energy to be when the log is at the bottom of 
its swing. Thus the PE of the log is zero the moment after the bullet strikes it. It 
does have a kinetic energy, however. The condition of conservation of energy can 
be written . PLEASE write it this way! I’ve seen a huge 
amount of confusion due to people memorizing special cases and then 
misapplying them! Our challenge in a conservation of energy problem is to 
determine the value of the constant. The easiest way to do this is to find some 
point at which we know the values of the PE and the KE. Ideally, one of these 
will be zero. This is, indeed, the case when the log has just been hit by the bullet: 
At that instant,  and 
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the constant (the total energy in the system) 
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Now, at the end of the swing, the kinetic energy will be zero (the log stops). 
Thus all of the energy will be in the potential energy and we have 

. Using the expression for gravitational potential energy, we 
have . Solving this for h, we have 
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6. A thin metal hoop and a solid disk both roll down an incline, starting 
at the same point. The masses of the two objects are the same—call 
it M. The incline makes an angle θ relative to the horizontal. The 
objects roll without sliding. Find a mathematical expression for the 
speed of each of the objects as a function of their position, x, along 
the incline. It is highly recommended that you use energy 
conservation to do this. 

Taking the very good advice of the very smart man who wrote the problem, we 
use conservation of energy for this system. The only difference between the objects is 
their moment of inertia, so we can do this once and then just substitute for the 
moment of inertia when the time comes. 

Unlike previous conservation of energy problems, we have two distinct kinetic 
energies to consider: One of these is due to the overall motion of the object. The other 
is due to internal motion of the object, motion which would require energy even if the 
object weren’t moving through space. Fortunately, we just have one type of potential 
energy to deal with here! Our conservation of energy equation is 

 As always, the constant is the total energy of the 
system. 

constantEPEKEK rot =++ ......

Let’s assume the object starts rolling when it is at h1. Thus, our constant will 
just be the potential energy of the object at that point. This is . Now, 
after the object has rolled a distance x, it will be at a different height. We can easily 
calculate the change in the object’s height using trigonometry. This is 

1h.. mgEP initial =

)sin(xhh 21 θ=− . Since the new potential energy will be , our 
conservation of energy equation gives us 
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algebra gives )sin(xhh.... 21 θmgmgmgEKEK rot =−=+ . 

Now, for our kinetic energies all we need to do is plug in formulas: 
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1.. mvEK =  and 2

2
1.. ωIEK rot = . Thus 

)sin(x
2
1

2
1.... 22 θω mgImvEKEK rot =+=+ . 

h1 h2

x 

θ 



We now have an equation that involves both the linear speed and the angular 
speed. However, since the objects are rolling, the two speeds are related. A point that 
is a distance r from the rotational axis of a spinning object moves at a speed of 

rv ω=  (be very careful when applying this! be sure you know which distance it is 
that you are talking about and what the direction of the velocity of that point is). 
Since these objects are rolling and not sliding, whatever speed a point on the edge has 

will be the speed at which the object moves. So we can write 
r
v

=ω . Substituting this 

into the equation above, we have )sin(x
2
1

2
1

2
1

2
1

2

2
222 θω mg

r
vImvImv =+=+ . 

Which can be cleaned up a bit to give )sin(x
2
1

2
1 2

2 θmgv
r
Im =⎟
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⎜
⎝
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Finally, dividing and taking a square root, we have 
⎟
⎠
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⎜
⎝
⎛ +

=

22
1

2
1

)sin(x

r
Im

mgv θ . 

We can now substitute for the moments of inertia of the two objects. For the 

disk, the moment of inertia is 2

2
1 mrI disk = . This gives 

4
3
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For the ring, we have , so 2mrI ring =

)sin(x
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There are several things to notice about these. First, notice that they neither 
depend on the mass nor on the radii of the objects. Galileo primarily used rolling 
objects for his experiments in order to minimize the effects of friction. This proves 
that his method was acceptable. Notice also that the speed of the disk has a number 
which is less than one in the denominator. Thus the disk is expected to be moving 
faster at a given distance down the ramp than the ring. This is consistent with what 
we observed in class. 



 

7. A rod is exactly one meter long. There is a 0.75 kg mass on each end 
of it. A man attempts to support it by placing his finger under the rod 
20 cm from one end. The rod can be considered to have zero mass. 
What is the total torque on the rod? (You may express the direction 
of the torque as “up”, “down”, “right”, “left”, “into the page”, or “out 
of the page” making reference to the above picture.) As an ungraded 
variation: Repeat the calculation using masses that are different. 

When we calculate torque, we are free to pick the point about which the 
torque is calculated (the “origin”). This can be any point in the universe—it 
doesn’t need to be the “axis” of the object (after all, we often don’t know what the 
axis is until we’ve solved the rest of the problem), in fact, it doesn’t need to be on 
the object at all! However, an unwise choice of this point will result in a 
tremendous amount of unnecessary work. A wise choice will minimize the 
amount of effort needed to solve the problem. 

In this case, there are three points that make senses: The location of either of 
the two masses or the location of the man’s finger. I’ll do it two ways—using the 
location of the finger first and then the location of one of the masses. I’ll leave it 
to you to use the location of the other mass as an exercise in problem solving. 

In order to solve for the torques, we first need to find the external forces and 
their locations. There are three external forces acting on the rod: The force of 
gravity pulling down on each of the masses and the force of the man’s finger 
pushing up on the rod. The force of gravity is just the weight of each of the 

masses Newtons35.7
second
meters9.8kg75. 2 =×== mgW . 

If the rod is not accelerating, the force exerted by the man’s finger is equal 
in size to the sum of the two weights. This is a common source of error. Be 
careful not to overlook it. The rod is not accelerating. Newton’s second law didn’t 
go away just because we started talking about torque. Therefore, the net external 
force must be zero. Since the total downward force is that due to gravity acting on 

14.7 N 

7.35 N 7.35 N 



the two masses, the force of the man’s finger must be the same size, only acting 
upward. Our free body diagram appears above. 

This diagram will be the same for any choice of the point about which the 
torques are to be calculated. What will be different is the distances—which, we 
must remember, are considered as vectors. Let’s use the mass on the left as our 
origin first. 

Picking our mass on the left as the origin, we have two distances, 21 and dd
vv

. 
Each of these is multiplied by the force at that location. Let’s find the size of these 
two products first and then worry about the directions (remember that the product 
is a vector and so must include both a magnitude [size] and a direction to be 
complete). This gives metersNewton2.94N14.7meter.20N7.1411 ⋅=×=×= dτ  
and metersNewton7.35N7.35meter1N35.722 ⋅=×=×= dτ . What about the 
force on the mass on the left? Well, since it’s at the origin, the distance to it will 
be zero. So, although there is a force acting there, the contribution of this force to 
the torque will be zero, so we can ignore it. (Please recall: This does not mean that 
the rod will pivot about that mass! We’re just calculating the net torque.) 

Now for the task of determining the directions of these products. The 
direction is determined using the “right hand rule.” The way this works is, for 
each of the products, draw the vectors in the product tail-to-tail (this is very 
important! also, it’s confusing because it’s different from what you draw when 
adding two vectors). Then, picture the d vector rotating into the force vector. The 
way I like to do it is to draw the two vectors in the product the same length for the 
purpose of determining the direction of the product: Just as we ignored the 
direction while we were calculating the size, so we now ignore the size when 
figuring out the direction. We’ll put the two pieces (size and direction) together 
later. This gives 

14.7 N 
1d
v

2d
v

7.35 N 7.35 N 



Now, take your right hand and orient it so that your fingers are curled along 
the path of the curved arrows in the picture above—your fingertips should point 
in the directions of the arrowheads. Stick your thumb straight out. Your thumb 
will be pointing in the direction of the resultant vector. Let’s call “out of the page” 

 and “into the page” ẑ+ ẑ− . Notice that 1τv  is positive and 2τv  is negative. (I’m 
not very concerned with whether you get the final answer with precisely the right 
sign. It is crucial, however, that you get the relative signs of the two torques 
correct.) 

We take these two values and add them, now keeping the signs, to find the 
final torque: 

ẑmeterNewton41.4
ẑmeterNewton35.7ẑmeterNewton94.221

⋅−=
⋅−⋅=+= τττ vvv

 

This is either out of the page or into the page. Since we decided that 
negative values were into the page and this is negative, we conclude the total 
torque is meterNewton41.4 ⋅=τv into the page. 

Now, let’s redo this whole problem with the location of the man’s finger as 
the origin. Now our diagram is shown above. As you can see, 1d

v
 has changed 

sign, but it’s the same size as before. On the other hand, 2d
v

 is a different size but 
is in the same direction as before. We get 

metersNewton1.47N7.35meter.20N35.711 ⋅=×=×= dτ  

(again, ignoring the direction for now). And 

metersNewton5.88N7.35meter.80N35.722 ⋅=×=×= dτ . 

Following the same procedure as above to find the direction, we see that 1τv  is 
positive and 2τv  is negative. Adding these together appropriately, we get 

14.7 N 
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ẑmeterNewton41.4ẑmeterNewton88.5ẑmeterNewton47.121 ⋅−=⋅−⋅=+= τττ vvv . 
This is the same number as before—as it had better be! We could do this calculation 
an infinite number of ways, all of which would be correct and equally valid and all 
of them had better give the same number. After all, the net torque tells us how large 
the angular acceleration will be. This is a real, physical quantity. It mustn’t depend 
on which inertial system we observe it from. 

I strongly encourage you to try redoing this calculation with at least one 
different origin as a test of your mastery of the method! 

 
8. Refer again to the rod in problem #7. The man is exerting enough 

force to keep the rod from falling down (if it didn’t rotate). Pick the 
mass on the left as the “special point” about which the torques are 
calculated. Calculate the total torque on the rod using this point. 

I used a little psychology in this problem: I just knew that virtually all of you 
would pick the finger as the origin for Problem #7 even though I didn’t specify 
that, so I felt safe giving you this problem as a followup. If you didn’t use the 
finger as the origin, congratulations! That showed real imagination. Anyway, the 
answer to this is given in my solution to #7, so I won’t repeat it. 

 
9. What is the angular speed of the Earth? Using this, what is the speed 

(not angular) of Edwardsville? 
The angular speed of a rotating object is the angle over which it rotates divided 

by the time that it takes to rotate that angle. Written as an equation, this is 
t
θω ∆

= . 

That part’s easy. Now, how do we find what it is for a particular system? When 
solving a problem, start by writing down the things that you know—be careful that 
they’re things that you actually know to be true, not things that you merely think are 
true (yes, that’s a hard call sometimes!). What I know about the rotation of the earth is 
that it makes one complete rotation every day. So, if I pick the angle, θ∆ , to be 2π 
(working in radians), I will know the time it takes to rotate that angle. Using this, we 

have 
st
110272.7

seconds86400
2 5−×==

∆
=

πθω . Note that I used the number of 

seconds in a day. Also, note the weird unit at the end. This is read “per second” or 
“Hertz”. I could have expressed this in radians per second as well, either way is 

equally accurate. Radians per second ⎟
⎠
⎞

⎜
⎝
⎛

second
radians  is probably clearer, however. 



Now, since the distance traveled by an object moving along an arc of a circle (or 
along a circle) is rl θ=  (being careful to express the angle in radians!), the speed of 
that object is given by rv ω= . So the speed of Edwardsville is the angular speed of 
the earth times the radius of the circle around which Edwardsville is traveling. Here’s 
where you’ll make a mistake if you’re not careful: Edwardsville is not revolving 
around a circle whose radius is the same as that of the earth! This can be seen in the 
picture above. The dot represents Edwardsville. While we are a distance R from the 
center of the earth, we are only a distance r from the rotational axis of the earth. The 
angle φL is the latitude of Edwardsville. So the distance from the earth’s rotational 
axis is ( LRcosr )φ= . Edwardsville’s latitude is about 39° and the Earth’s radius is 
about , so  This gives meters106.37R 6×= meters.1095.4r 6×=

second
meters360meters1095.4

second
110272.7 65 =×××== −rv ω  (this is about 800 

miles per hour).  
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