
PHYSICS 206a 
HOMEWORK #7 

SOLUTIONS 
 
1. A teaspoon of sugar contains 62790 Joules of chemical potential 

energy. If a building is 3 meters per floor, how many floors up would 
a 75 kg person need to climb to use up the energy in a teaspoon of 
sugar? (An ungraded variation for your consideration: A can of Coke 
has about ten teaspoons of sugar. How high does that person need 
to climb to “burn off” a can of Coke?) 

This is just a very simple calculation, albeit a very disturbing one: The total 
work done by a person climbing a building is. This is the force the person exerts 
against gravity (mg) times the height they climb. It is equivalent (since gravity is a 
conservative force) to the change in gravitational potential energy of the person. 
(We neglect the K.E. of the person—let’s assume they maintain the same speed 
going up that they had walking horizontally into the building.) Setting this equal 
to the energy available as chemical potential energy in a teaspoon of sugar and 
inserting the mass of the person and the acceleration due to gravity, we have 

Joules62790
second
meters8.9kg75 2 =××== hmghW . This can easily be solved for 

h to yield . And, since we have 3 meters per floor, we just divide 
by three to find that the total number of floors is slightly over 28. Scary! That can 
of Coke would fuel nearly three trips up the Empire State Building! (And let’s not 
even think about what a Krispy Kreme doughnut would be good for.) 

meters4.85=h

Notice that, in this case, we’ve transformed one type of potential energy 
(chemical) to another type of potential energy (gravitational). Students new to 
these concepts frequently make the erroneous assumption that one can only 
transform potential energy into kinetic energy. This isn’t true: Any form of energy 
can, in principle, be transformed into any other kind of energy. 

This problem points out the fact that human beings are chemical engines. 
We don’t convert chemical potential energy directly to mechanical work. There 
are essential inefficiencies in the way we operate. One must be careful in 
considering how much energy a specific system needs: It needs at least enough 
energy to do the mechanical work dFW

vv
⋅= . But it may well need significantly 

more energy to perform tasks “under the hood” that are never seen externally. 



5. For each of the situations described below, state whether the forces 
involved are conservative or dissipative: 

a. A baseball bat swings and hits a ball. 
b. An outfielder catches the ball. 
c. A man places a bowling ball on a tall shelf. 
d. The bowling ball falls down and shatters the floor below it. 
e. A water molecule is ripped apart into its constituents—

hydrogen and oxygen. 
I wanted to get you thinking, in this set of problems. In each of these cases, 

there are several different answers that might be given. Let’s walk through a few of 
them. Recall that conservative forces lead to work that becomes either kinetic energy 
(K.E.) or potential energy (P.E.). P.E. is energy representing work done that is still 
available to the system—getting at it can be a trick, in many cases, but it’s still there. 
Dissipative forces, on the other hand, lead to work that is lost to the system. Certain 
keywords that give a clue that a force is dissipative are: Rip, break, stick, rub, and 
bend. (“Bend” can go either way. If something bends “elastically,” i.e., if it bends and 
can spring back, then the force is conservative. If it bends and stays bent, the force is 
dissipative.) Let’s analyze the situations listed above: 

a. The baseball bat swinging has a lot of K.E. The ball also has a lot of K.E. 
When the bat hits the ball, the first thing that happens is that the ball deforms. 
This robs the ball of all of its K.E. and it robs the bat of some of its K.E. But a lot 
of that energy goes into an elastic deformation of the ball (and the bat—bats bend 
and compress during the violent collision between bat and ball). Here’s the neat 
part: If the bat is swinging fast enough, the bat accelerates the ball up to a very 
high speed while the ball is still compressed. (This is why it’s desirable for balls 
to stay in contact with bats for as long as possible, which, in turn, is why 
unscrupulous baseball players coat their bats with sticky stuff, like pine tar.) After 
a little while, the ball un-compresses, regaining much of the K.E. (that had 
originally been in both the bat and the ball) that had been stored as P.E. in the 
ball’s deformation. So the ball gets back much of its original K.E., some of the 
bat’s original K.E., and some K.E. due to work done on the ball by the bat (and, 
ultimately, by the guy swinging the bat). So this situation is primarily 
conservative. 

That said, there are still dissipative factors involved in this situation. The wrapper 
on a baseball gets torn. Bats get dented and get micro-cracks in them (which, 
ultimately, leads to them shattering). One can, literally, hear some of the 
dissipative forces: Even many meters away from a bat hitting a ball, the sound is 
quite loud. Thousands of tons of air were moved by the sound wave that allows us 
to hear the impact! So dissipative forces abound in this situation, even though the 
desired behavior consists of the conservative forces. 

b. When the outfielder catches the ball, quite a different situation exists. The ball 
has a huge kinetic energy when it reaches him. (Often, this was temporarily 
transformed to gravitational potential energy along the way, but that’s all gone 



when the ball descends into the outfielder’s hand.) But he catches the ball and all 
of that hard-won K.E. goes away. Can it be gotten back? Nope. It’s gone. This 
involves essentially purely dissipative forces. 

c. To place a bowling ball on a tall shelf, the man had to do a fair amount of 
work. But this was almost purely in the lifting of the ball against the force of 
gravity. So the ball gains P.E. This is still available—all we need to do to get it 
back is to let the ball fall down. Now, it is true that there really isn’t a good 
conduit for the man to get the energy back. If the ball gains K.E. by falling off a 
shelf, the man can’t eat it to regain the chemical P.E. he used doing the work 
needed to get the ball up there in the first place. But the definition of P.E. doesn’t 
demand that the energy be regained in any particular form. As long as it’s still 
available to the system to do any kind of work, the energy is potential. 

d. In this case, there are two phases: The falling and the smashing. When the ball 
falls off the shelf, the P.E. that the ball gained while being placed there is 
transformed into K.E. via gravity. This is a conservative force. But then it hits the 
ground. The floor is smashed. It takes work to break things like floorboards. That 
work cannot be gotten back. So the force which breaks the floor is dissipative. 

e. The force that holds the atoms in a molecule together is primarily the 
“electrostatic force.” This is a conservative force. Molecules can have either 
positive or negative P.E. A molecule which has a negative P.E. requires work to 
break it apart: This is the sort of reaction that Chemists call “endothermic.” The 
P.E. of the molecule is less than the P.E. of the constituent atoms when they are 
far apart. A molecule which releases energy when it is broken apart has a positive 
P.E. This is the sort of reaction that Chemists call “exothermic.” The constituent 
atoms have less P.E. when they are far apart than the molecule had. Either way, 
the force involved is conservative. 

You’d be right to be a bit confused by this last result: I told you previously 
that when something breaks the force is dissipative. Here, a molecule is breaking, 
isn’t it? Well, yeah. But not in the same sense as a piece of wood cracking. There 
are some amazing subtleties to this that we will discuss later this semester, but, for 
now at least, the big difference is simply between “microscopic” and 
“macroscopic.” On the atomic level, all forces are conservative. Only when 
systems get complex do dissipative forces come into play. 



6. The potential energy of a compressed spring is given by 2

2
1.. kxEP =  

(we’ll study springs in more detail later this semester) where k  is a 
constant dependent on the particulars of the spring and x  is the 
amount by which it is compressed. Consider the following situation: 

A spring, oriented horizontally, with 
meter

Newtonsk 70=  is compressed by 

13 cm. It is then allowed to expand, pushing against a ball with a 
mass of 37 grams. The ball rolls up a ramp with an incline of 17° 
relative to the horizontal. The ramp is 3 meters long. 

a. What will the ball’s velocity be when it leaves the ramp? 
b. What will the ball’s speed be when it hits the ground?  

Oh, dear! This does look complicated, doesn’t it? Well, it’s actually not too 
bad, if you have a good understanding of Conservation of Energy. Let’s begin 
with a little picture: 

Now, think about what’s going on: Someone does some work to compress 
the spring. The spring stores that work in the form of its own P.E. until it is 
released. It then transfers that P.E. to the ball, which starts to roll with a certain 
amount of K.E. (In fact, a certain amount of energy goes into “rotational kinetic 
energy” which we haven’t yet studied. Perhaps I’ll re-assign this problem after 
we’ve studied that. It actually does have a profound impact on the answer you’ll 
get.) But we don’t need that information just yet. This is because the ball goes up 
the ramp. This converts a certain fraction of the K.E. into gravitational P.E. But 
not all of it. The ball still has some K.E. when it gets to the top of the ramp. So it 
flies off the end of the ramp with a speed . Before we go too much further, let’s 
do some calculations. 

v

The total energy of the system is just whatever initial potential energy was 
stored by the spring. This is the constant in our conservation of energy equation. 

h 
θ 
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I.e., 2

2
1.... kxconstantEKEP ==+ . In order to find the speed at the top of the 

ramp, we’ll need the kinetic energy, so we solve for that: 

..
2
1

2
1.. 22 EPkxmvEK −==  

To go on, we’ll need to figure out the P.E. At the top of the ramp, the only 
P.E. is that due to gravity and we have a simple equation for this: 

. Be careful using this:  is the distance from the place where we 
choose P.E. to be zero. In this case, it makes a lot of sense to pick the ground as 
that location. So  is the height above ground. It won’t always be! 

mghEP gravity =.. h

h

Now, from the picture, we can see that the height above ground of the ball 
can be simply found to be )sin(θlh =  where l is the distance the ball travels 
along the ramp. So )sin(.. θmglEP = . 

We can directly substitute this into our energy conservation equation to get 

)sin(
2
1..

2
1

2
1.. 222 θmglkxEPkxmvEK −=−== . A bit of algebra solves for the 

speed: 
m
mglkxv )sin(22 θ−

= . (Note my use of symbols throughout: Break 

yourselves of the insidious habit of substituting numbers into your solutions 
before the very end! Symbols convey far more meaning than numbers and 
numbers easily hide errors from you, preventing you from fixing them, but expose 
them to critics [like me and your grader]!) 

We’re not done yet! The question asked for the velocity of the ball at the 
instant it leaves the ramp. We have its speed, but we lack the directions. When the 
ball leaves the ramp, it initially has exactly the speed it had when it was on the 
ramp and it initially travels in exactly the same direction as the surface of the 
ramp. (Of course, this begins changing immediately, but at the instant the ball 
leaves the ramp, this is the case.) It would be minimally acceptable simply to 
express the velocity, therefore, as vv =v  “17° relative to the horizontal.” But using 
components is far preferable. In fact, very soon now, I’m going to insist that 
vectors be represented only in component form—you’ve graduated from that 
kiddie stuff! Doing it this way is quite simple. Using the methods that, by now, 

are very familiar to you, we get ( ) ( )[ ]yx
m
mglkxv ˆ17sinˆ17cos)sin(22

°+°
−

=
θv . 

Now you can substitute numbers into the equation, if you want. 



4. Which has a bigger change in kinetic energy: A ball thrown against 
the wall which bounces back to the thrower or one which (due to a 
nasty practical joke) sticks to the wall? 

Let’s call the (kinetic) energy of the ball just before it hits the wall E. If the 
ball sticks, then its energy after the collision is zero. If the ball bounces off at any 
speed at all, its kinetic energy is going to be greater than zero so the change in 
energy is going to be: 

zerothangreaterSomethingE

hittingafterEnergyhittingbeforeEnergyEK

−=

−=∆ ..
 

There is no way the wall is going to add energy to the ball. (If it were a 
baseball bat, golf club, or tennis racquet things would be different. In those cases, 
K.E. is transferred to the ball from something into which a human being is 
continuously adding energy.) So the energy after hitting is at most the same as the 
energy before hitting. For the case in which the ball bounced, the change in K.E. 
might be anything between zero and E, but always less than E. So the ball which 
sticks always has the bigger change in energy. 

 
5. A rubber ball with a mass of 210 grams is thrown exactly horizontally 

from a height of 2 meters with an initial speed of 
s
mv 13= . When it 

strikes the ground, it bounces off at the same angle it made when it 
landed. During the bounce, it loses 20% of its kinetic energy to 
dissipative forces. How high does it go after bouncing? 
A major reason I assigned this problem is to continue the process of breaking you 

of a very bad habit of thought that has been cultivated in many of you by the sorts of 
problems you’ve been assigned in the past: It is my conjecture that you believe 
(unconsciously) that all problems can be solved in a single step. When I state it this 
way, you probably say “well, I don’t believe that at all!” Whether the conjecture is 
true or not, I’m still certain that practice in solving multi-step problems is a good 
thing. 

Here we have a problem that simply cannot be solved in a single step. It’s best 
attacked as two, distinct problems. The situation appears in the picture below: 

h 

ivv

θ θ 

and so on... 



(Sorry for the nasty artwork! Let me know if it really doesn’t make sense.) 

What we have here is two problems which can be solved using conservation of 
energy, but the constant (the total energy) changes from one to the next, so we need to 
deal with them one at a time. I’ve drawn a (vertical) dotted line to indicate where the 
first problem is separated from the second. 

Beginning on the left: This is a class case of conservation of energy. We have the 
standard equation we begin with in all such cases constantEKEP =+ ... . We just 
need to figure out what the constant is. Of course, the constant is the total energy, so 
let’s figure out what that is. Let’s pick the zero point for potential energy to be on the 
ground. This means that the ball starts with some gravitational P.E. It also (as we are 
told in the statement of the problem) has some K.E. as well. Let’s give the constant a 

name—let’s call it K , for convenience. So we have 2

2
1... imvmghKEKEP +==+ . 

(Note that I’ve called the initial speed,  where iv
s
mvi 13= .) 

Since the system is conservative, until the bounce, this will be the total energy 
when the ball is just about to hit the ground, as well. At that instant, just before the 
ball hits the ground, the potential energy is zero (we picked the ground to be the place 

where P.E. is zero). So we can say Kmv =2
12

1 . 

Why did I bother finding this? Well, we were told that the angle after the bounce 
is the same as the angle before the bounce. But we weren’t told what that angle is! I’d 
sure like to know—it will come in very handy in a little while. So I’d like to find the 
magnitude of the velocity, which I’ve called . Solving the above equation, we get 

. (If that doesn’t look familiar, look at it again: This is our old friend 
 in a slightly modified form.) We also know the x component of the 

velocity: Since the only acceleration in this problem (so far) was that due to gravity, 
the x component of the velocity has been left unchanged from its initial value. So we 
know the x component of velocity and the magnitude of the velocity as well. This 
means that we can find the cosine of the angle and, with one last step, the angle itself: 

1v
22

1 2 ivghv +=

advv if 222 =−

11

1)cos(
v
v

v
v ix ==θ . I’ll just leave it like that, for now. Next, we bounce. 

The ball hits the ground. A bunch of complicated stuff happens, but this takes 
only a small amount of time. At the end of this time, the ball has finished its bounce 
but it hasn’t gone anywhere yet. So its P.E. is still zero. All of its energy is K.E., but 
the total energy is reduced from what we found previously. Now we have 

Kmv ×= 8.0
2
1 2

2 . Where did the 0.8 come from? Well, it lost 20% of the energy that 

it had, so it’s still got 80% of it’s original total energy. Thus, 



2
1

2
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18.08.0
2
1 mvKmv ×=×= . A bit of algebra gives ( )22

1
2
2 28.08.0 ivghvv +×=×= . 

Or, finally, ( )2
2 28.0 ivghv +×= . 

We want the total height after the bounce. So we’ll need the y component of the 
velocity. From the theorem of Pythagoras, . So 

. We can now use 

2
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2
2

2
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Of course, we can now use  to conclude that 

 so 

advv if 222 =−

ghvgh y 28.02 2
22 ×== .8.02 hh =  Using numbers, mh 6.12 = . 

Confession time: I gave many of you the wrong answer on this when you talked 
to me about it! Many people came up with this answer, but, due to an algebra gaff on 
my part, I told them that they were wrong. Mea maxima culpa! I apologize profusely. 
I was wrong, you were right. 

Frankly, this is a very surprising result! Note that it is only true because the angle 
of the bounce is the same as the angle of the impact. In an inelastic bounce, this is not 
always the case! This is why my intuition failed me: I know that the general answer is 
more complicated. But, by giving you a simple geometry, we got a very elegant 
answer. One of the many things that I love about my job is that I get to learn little 
tidbits like this from time to time. Thank you for the opportunity! 



6. Consider again the situation given in Problem #9 of Assignment #6: 
A man drags a heavy box across the floor at a constant speed using 
a rope. The rope makes an angle θ with the floor. The man exerts a 
force FT on the rope. Assume the box has a mass of 15 kg, θ=17°, 

FT=75 N. If the man walks at a constant speed of 0
second
meters7. , how 

much power does he expend? (Note: This only makes sense if there 
is friction in the problem, so assume that there is friction—it won’t 
affect your answer in any way and you will not need an explicit value 
for the coefficient of friction. But the statement of the problem is 
contradictory without it. Can you see why?) 

All we need to do is remember that power is simply energy divided by the 
time over which that energy is produced or used. To see the solution to this 
problem, imagine that the man walks a distance d. How much work does he do? 
Recalling that work is force times the distance traveled in the direction of the 
force, from the previous assignment, we have )cos(FT θdW = . To find the power 
produced (or used) we just divide this by the time it took him to walk that distance 

t
dP )cos(FT θ

= . But the distance traveled divided by the time it took to travel that 

distance, 
t
d , is just the definition of speed. So )cos(F)cos(F

T
T θ

θ v
t

dP == . Stated 

in terms of the “dot” product, vFP vv
⋅= . 

7. Which has a bigger change in momentum: A ball thrown against a 
wall which bounces back to the thrower or one which (due to a nasty 
practical joke) sticks to the wall? 

This problem was intended to drive home the importance of the fact that 
momentum is a vector quantity. Let’s take the initial momentum of the ball to be 

. For convenience, let’s just ignore the fact that the ball arcs and will 
have some y component to its velocity and momentum due to gravity. This makes 
no difference in the problem, but it does make for extra work to solve it. Now, 
when the ball sticks, the momentum at the end of the trip is zero—the ball stops 
moving. So 

xpp ˆ0=v

xpxpppp beginend ˆˆ0 00 −=−=−=∆ vvv . 
On the other hand, if the ball bounces back with some speed, its return 

momentum will be xppend ˆ1
vv −= . Here’s the crucial thing: Notice the sign on 

endpv . If the ball’s momentum while traveling to the wall was positive, then its 
momentum traveling away from the wall must be negative! It’s size is not 
important in this problem, only its direction. When we calculate the change in 
momentum in this case we get xppxpxpppp beginend ˆ)(ˆˆ 0101 +−=−−=−=∆ vvvv . 
Since we’re assuming that  is greater than zero (after all, it can’t be less than 
zero and if it’s equal to zero, then the ball stuck, which we’re assuming isn’t the 
case),  must be greater than . Thus, the change in momentum is bigger 
for the ball that bounces. 

1p

01 pp + 0p



In the special case that the ball bounces back with the same speed as that 
with which it was thrown, the change in momentum is twice the original 
momentum! Compare this with the result you found for energy in the previous 
assignment. 

 

8. With what minimum speed would a housefly (with a mass of 1 gram) 
have to be thrown against a Volkswagen (with a mass of 1300 

kilograms) traveling at 
second
meters22  in order to get it to stop? 

After the impact of the fly against the VW, the speed of both of the bugs is 
zero (that’s what stopping is, after all). Since their speeds are both zero, the total 
momentum of the system (VW + fly) is zero. Since momentum is always 
conserved, if the total momentum of the system is zero after the collision, it must 
be zero before the collision as well. Thus we can say 0=+= VWflytotal ppp vvv . 
Since this is clearly a one-dimensional problem, we can rewrite this without the 
vector symbols, which gives: 0=+= VWflytotal ppp . This means . 
Writing this out explicitly in terms of mass and speed, we have 

 which can be solved for the speed of the fly, 

VWfly pp −=

vwVWflyfly vmvm −= vw
fly

VW
fly v

m
m

v −= . 

Inserting numbers gives 
second
meters109.2

second
meters22

kg101
kg1300 7
3 ×−=

×
−= −flyv . The 

minus sign indicates, as we knew, that the fly is traveling in a direction opposite 
to that of the car. Note that this speed is 10% of the speed of light—the fastest 
speed that it is possible for anything to have. At this speed, we’d have to use 
Einstein’s theory of relativity to get a precise answer! So you don’t have to worry 
about an errant bug causing you to suddenly stop on the freeway. 

 

9. A molecule of carbon monoxide (CO), which consists of one atom of 
carbon and one atom of oxygen, is forced to break apart by the 
addition of a certain amount of energy. There is a net excess of 
energy of  joules which all goes to kinetic energy of the 
“fragments” (i.e., the atoms). What are the velocities of the two 
fragments? (Carbon has a mass of 12 amu and oxygen has a mass of 
16 amu.) 

19103 −×

It may not be obvious to you, but this problem is an inelastic collision. 
Granted, the particles (the atoms, in this case) are flying apart rather than coming 
together, but all that means is that the clock is running backwards. Imagine I’d 
told you the atoms strike each other and stick together and that they have  
Joules more energy before they strike than after they stick. See, now that’s an 
inelastic collision! Same thing. This is a powerful insight and if you can see it in 
this way it is a sign that you understand what’s going on at a sophisticated level. 

19103 −×



We have two unknown quantities here: The speed of the carbon atom and 
the speed of the oxygen atom. (Because there are only the two particles, this must 
be a one-dimensional problem, thus we can ignore the vector aspects and work 
with speed and not velocity.) We know that we will, therefore, need two algebraic 
equations. 

A powerful problem-solving strategy is to begin by listing the things we 
absolutely know about the system. It’s crucial that we get this list correct: Be 
certain that you really know the items on it are true and that you’re not being 
driven by wishful thinking! (E.g., a lot of people simply assume that the two 
speeds are the same. Untrue!) That said, I can think of two things that I know are 
true: (1)The momentum of the system is conserved with a total value of zero (we 
are safe in assuming that the initial velocity of the molecule is zero—even if it 
isn’t, we know that we can change our reference frame to one in which this is the 
case, so we might as well keep things simple), and (2)the sum of the K.E.s of the 
atoms will be . The first I know because it is always true (that is, the 
momentum is always conserved—it is not always conserved at a value of zero, 
however; this needs to be determined for each problem). The second I know 
because it was stated in the problem itself. Writing these out as equations, we 
have 

19103 −×

Joules103and 192
2
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2
1 −×=+−= ooccoocc vmvmvmvm . 

Let’s solve the first of these to get  in terms of . This gives cv ov

o
c

o
c v

m
m

v −= . This can be substituted into the K.E. equation to give 
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m . Multiply both sides by 2 and combine 

terms on the left to get Joules106 192
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 which gives 

o
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v
+

×
=

−

2

19 Joules106 . So far this was all pretty mechanical. Here’s the first real 

trap. First of all, for those of you who obsess on putting numbers in as soon as 
humanly possible, you’ve really made a lot of work for yourself! Now is the first 
place where numbers really should be substituted (even expressing the K.E. as a 
number wasn’t the prettiest thing in the world—it would have been better simply 
to keep calling it K.E.). Second, I gave you the masses in amu (Atomic Mass 
Units). Don’t convert these to kg just yet! Wait until you have to. For now, 
working in amus, which are small integers, makes a lot more sense. But we must 
remember to convert from amus to kg before we’re done. 



Substituting the masses of carbon and oxygen into the above equation gives 

amu3.37
Joules106

amu16
amu12
amu16
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the amu to kg. There are  in each amu, so kg1067.1 27−×

second
meters101.3

kg1023.6
Joules106
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To find , we just use this value along with the masses in amus (no reason 
to convert at all in this step since the masses occur in a ratio—their units just 

cancel). This gives 

cv

second
meters101.4

second
meters101.3

12
16 33 ×−=××−=−= o
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o
c v

m
m
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