
PHYSICS 206a 
HOMEWORK #6 

SOLUTIONS 
 
1. A car travels at a constant speed around a circular track. The track is 

perfectly horizontal. Draw a free-body diagram showing all the 
external forces on the car. If the force of static friction between the 
car’s tires and the road is µs, what is the maximum speed with which 
the car can travel if it is to remain on a circular path? Express your 
result as a function of the mass of the car, the radius of the track, 
and µs. 

Please note an egregious typographical error on my part in the above 
questions: The force of static friction isn’t µs. µs is the coefficient of static friction. 
It doesn’t turn into a force until it is multiplied by the normal force. This was a 
horrible error on my part and one which I would harshly penalize you for making. 
So I guess this is a “do as I say, not as I do” situation. Please don’t forget that the 
coefficient of friction isn’t the same as the force of friction. You have my sincere 
apologies for this error! 

I’m not a good enough draftsman to draw the free-body diagram for this in a 
single drawing, so I’ll do a top-view and a view from the rear of the car. We have: 

Notice that the vertical forces cancel, as they should: There is no acceleration 
vertically. Horizontally, however, there is a net force. This is directed toward the 
center of the circular track and is dubbed the “centripetal force.” Please 
understand that there is no particular force called “centripetal” any more than 
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there is a particular force called “up” or “down” or “left.” To say that a force is 
centripetal simply says what direction it points—toward the center of the circle. In 
this case, the centripetal force is provided by friction. (If we wanted to do the 
same problem but with the car on, say, a frozen lake which doesn’t provide much 
friction, we could get a centripetal acceleration by strapping rockets to the side of 
the car pointed away from the center of the track.) 

As was noted in the answer to the previous problem, NF sF µ≤ . This can be 
read “the frictional force has a maximum value of Nsµ .” When the car is just 
about to slip, the friction is at its maximum value and the equality can be used so 
we can write NF sF µ= . Since, in this case, the normal force and the weight have 
the same size, this can also be written mgWF ssF µµ == . (As stated above, don’t 
forget to multiply the coefficient of friction, µs, by the normal force. If this 
distinction isn’t clear, come chat with me about it.) 

If a centripetal force is to keep an object moving in a circle at a constant 

speed, then its size must be 
r

mvFc

2

= . Since the centripetal force, in this case, is 

provided by the frictional force, we can write mg
r

mvF sc µ==
2

. When we solve 

this for v, we get grv sµ=max . Notice that the result does not depend on the 
mass of the vehicle. 

2. Assuming the car in Problem #1 has a mass of 1300 kg (that’s about 
a VW Golf—which is what I drive), the track has a radius of 63 
meters, and µs is 0.8, what is the maximum speed of the car? (Sorry 
for the typo in the original problem—of course I meant “Problem #1” 
not “Problem #8” as originally written.) 
This is just an opportunity to plug numbers into the answer you got in the 
previous problem since so many of you just don’t consider a problem “done” until 
there’s a number. Taking grv sµ=  we get (notice that the mass is irrelevant) 

second
meters2.22

second
meters8.98.meters63 2 =××== grv sµ . 



3. Consider again the car in the previous problem. If there is no friction 
between the tires and the road, at what angle must the road be 
banked to allow the car not to skid? Draw a free-body diagram of this 
situation.  

 

The free-body diagram appears above. I’ve put in a coordinate system with 
the x and y axes in the “usual” directions. How did I know to do this and not the 
weird direction we’ve used before, with the x axis parallel to the surface? Well, I 
know (because it was stated in the problem) that there will be no motion of the car 
in the direction parallel to the surface of the incline. So there’s no good reason to 
put a coordinate axis in that direction. On the other hand, I know the value of the 
weight, so putting an axis in that direction is attractive. Finally, as we’ll discuss 
below, I also know that the net acceleration will be in the  direction if I use the 
axes as drawn. In general, a wise choice of coordinate axes is that which allows 
the largest number of things to be written with only one component. Yes, there’s 
an art to making the right choice and you won’t always get it right. 

x̂

The absolutely KEY feature to this problem is that the free body diagram is 
utterly identical to that for the block on the ramp in problem #7 of assignment #4 
and the one for Lab Exercise #3. There is no additional force in the problem. 

Think, for a moment, about what happens in the “block on a ramp” situation 
with no friction: I think we’d all agree that the block very nicely slides down the 
ramp. You did this in lab with the airtrack and found that the acceleration down 
the ramp was )sin(θg . So, we have a bit of a conundrum: Ignoring friction, this 
problem has exactly the same forces as the “block on a ramp” situation. So why 
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doesn’t the car just go sliding down the banked road? Think about that for a 
moment, I’ll wait here.  

Done? Good, here’s the answer: The result from the “block on a ramp” 
experiment was not that the block would move down the ramp, but that it would 
accelerate in that direction. Remember: “To accelerate” does not mean “to 
move!” We can have acceleration without any motion in the direction of the 
acceleration. In this case, if the car moves with just the right speed, the 
acceleration will change the direction of the car’s velocity without changing its 
size at all. In some sense, the car can be thought of as slipping down the bank, but 
every time the car slips a tiny (really, infinitesimal) amount down the bank, it also 
moves a bit around the track so that it sits higher up the bank. Matching the 
slipping-down with the catching-up happens only at a single, specific speed. We 
must find the speed that the car has to go so that it catches itself and the 
acceleration only changes the car’s direction and not its speed. (There’s a lot of 
meat in that paragraph. Don’t just read on! Go over what you’ve just read a few 
times until it makes sense. The words below will still be there when you’re done.) 

Think about what would happen if the car were moving too fast: It would 
tend to creep up the bank, ultimately falling off the road. Now think about what 
would happen if the car were moving too slowly: The tendency to accelerate 
down the bank would result in actual motion in the direction of the acceleration. 
Only when the speed is exactly matched to the angle of the bank does the “falling 
but getting caught” exactly work. (We’ll encounter this balance again when we 
deal with planetary orbits.) 

So, now we understand what’s going on. The next step is to get the numbers 
right. As stated above, I’ve put in a coordinate system with the x and y axes 
pointed in the “usual” directions, rather than parallel and perpendicular to the 
surface of the bank. This is because we don’t expect motion along the bank and 
there’s no particular force (e.g., friction) parallel to it, so there’s no good reason to 
use this as a reference. (One nice thing about the math in problems like this is that 
the penalty for not getting the ideal coordinate system is simply that the problem 
will be more difficult. You’ll still get the right answer, you’ll just have to work 

N
v

xN x ˆ

yN y ˆ



harder for it.) In previous problems, we’ve decomposed the weight into x and y 
components. Since the weight is now all in the y direction, we don’t need to do 
this. However, now we have to decompose the Normal force. Using the methods 
with which we should all now be very familiar, we get )sin(θNN x =  and 

)cos(θNN y = . 

From here, the next step should be second nature to you: Having come up 
with a coordinate system and having decomposed all the forces so that we know 
their components in the directions of the axes, we have turned our 2-dimensional 
problem into two 1-dimensional problems. We treat the x and y parts separately. 

In the y direction, we have gravity pulling down and the y component of the 
Normal force pushing up. These exactly cancel. In the x direction, there is one and 
only one force: The x component of the Normal force. It is this force that provides 

the centripetal acceleration. So, we can say that 
r
vmNN x

2

)sin( == θ . We lack a 

value for N, but this can be found from the y component. Since we know that 
gravity exactly cancels the y component of the Normal force, we can also write 

mgNN y == )cos(θ . So a wee bit of algebra gives us 
)cos(θ

mgN = . 

Now, substitute the expression for N into the expression for Nx to get 

r
vmmgN x

2

)cos(
)sin(

==
θ

θ . And, finally, using the relation found in Problem #5 of 

Assignment #5, we get 
gr
v 2

)tan( =θ . 

This result should ring some bells. In Problem #5 of Assignment #5, you 
found that the coefficient of static friction for a block on an incline is 

)tan(θµ =s . In Problem #1 of this assignment, you found that 
gr
v

s

2

=µ  for a car 

on a non-inclined track. What we’ve now shown is that the force given by 
)tan(θmg  makes the block slide down the ramp if there isn’t anything to catch it, 

but if the ramp is part of a curved track, the downward slide gets “caught” and the 
block doesn’t slide down but rather goes in a circle. Don’t worry if this insight is 
not quite clear to you. Being able to work out the problems independently is 
what’s crucial at this stage. Just be aware that the results of problems #1, 3, and, 
from assignment #5, 5 are related at a deep level. This is not mere coincidence! 



4. A man with a mass of 110 kilograms stands in an elevator. The 
elevator is lifted by a single rope. The elevator has a mass of 1030 

kilograms. The elevator accelerates upward at 2second
meters8.0 . 

a) Draw a free body diagram for the person indicating all relevant 
forces. 

b) State the size of each of the forces indicated in (a). 
c) Draw a free body diagram for the elevator. 
d) State the size of each of the forces indicated in (c). 
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a. There are two ways to do this problem: We can either work in the inertial 
reference frame of the Earth or we can work in the non-inertial reference frame of 
the elevator. The two approaches will give exactly the same answer provided we 
do them right. Let’s do it both ways and see. 

In the inertial frame, the elevator accelerates. Since the person is in the elevator, 
the elevator must exert a force on the person such that the person accelerates at 
the same rate as the elevator. (If it didn’t, the person would fall through the floor 
of the elevator or fly through its ceiling!) There are only two forces acting on the 
person: Gravity pulling down and the normal force, provided by the floor of the 
elevator pushing up. 

In the non-inertial reference frame, the elevator does not accelerate! Instead, the 
person experiences a fictitious force in addition to the force of gravity downward 
and the normal force upward.  

b. The weight of the person, which is the force of gravity pulling on the person, is 
simply . Inserting the mass of the person and the strength of gravity, we 

get 

mgW =

Newtons1078
second
meters9.8kg110W 2 =×= . This is true in both the inertial 

and the non-inertial reference frames. 



Finding the normal force is a potential trap. Recall that the normal force is the 
only upward force acting on the person. In the inertial reference frame, the person 
is accelerating upward, so there must be a net force pushing up on the person. 
Your first instinct was probably to equate the normal force with the weight of the 
person. This would be correct in the non-inertial reference frame (see below). But 
in the inertial reference frame, this is incorrect. Using Newton’s second law, we 
have  (since this is a 1-d problem, we can leave off the vector 
symbols, but we do still need to retain the signs correctly to indicate direction). 
Inserting the mass of the man and his acceleration, we have 

WNmaFnet −==

Newtons88
second
meters.80kilograms110 2 =×==− maWN . This is the net force 

acting on the man. Using this and the weight we found earlier, we get 
Newtons1166Newtons88Newtons1078 =+=N . 

Now, in the non-inertial reference frame, the man doesn’t accelerate. So, in this 
case, the normal force is equal in size to the sum of the downward forces. The net 
force in the non-inertial reference frame is zero. (This is why our minds tend to 
choose these reference frames when we are in them. Usually, using a non-inertial 
reference frame to solve a problem is a very bad idea. But, psychologically, we 
use these all the time. This is the source of many misconceptions about Physical 
laws. So we should learn to solve problems in non-inertial reference frames so 
that we can understand the origins of the fictitious forces that cause our 
misconceptions—that will allow us to attack those misconceptions.) But we must 
solve for the fictitious force. Recall that the fictitious force an object experiences 
in a frame that is accelerating at fav  is ffict amF vv

−= . Note two things about this 
relation: First, the minus sign tells us that the fictitious force will be in a direction 
exactly opposite to the acceleration of the frame. In this case, the frame is 
accelerating “up” so the fictitious force will be “down.” Second, the mass that 
experiences the force is the mass of the object in question—in this case, the man. 
The mass of the frame (the elevator, in this example) doesn’t matter at all. 

Using this, we can write 0=−−== fictnet FWNmaF . Since 

yyamF ffict ˆNewtons88ˆ
second
meters.80kilograms110 2 −=×−=−= vv

 (the same 

direction as W), and we know the man’s weight, we can immediately solve for the 
normal force—this gives the same final result as we found previously. 

Note one last detail: When I wrote 0=−−== fictnet FWNmaF  I put in the signs 
“explicitly.” But then I calculated  and put in the sign “implicitly.” This is a 
bit confusing. Be careful when you’re doing this sort of calculation: The minus 
sign in front of  in 

fictF

fictF 0=−−== fictnet FWNmaF  already accounts for the fact 
that the fictitious force is downward. Don’t double-count! 



c.  

Now, the elevator is a candidate for a non-inertial reference frame, but it 
does not exist within a candidate for a non-inertial reference frame. So we must 
treat the elevator as an object within an inertial reference frame—which makes 
life easier. As with the free-body diagram of the man, there are only two forces 
acting on the elevator. These are the weight of the elevator (including its 
contents!) downward and the tension on whatever cable is pulling the elevator up. 

W

FT

d. The weight is the force of gravity pulling on the elevator plus the force of gravity 
pulling on the person. This is gmmW elevatorperson )( += . Inserting the masses and 
the strength of gravity, we get 

( ) Newtons172,11
second
meters9.8kg1030kg110 2 =×+=W . 

The tension on the cable must provide the force needed not only to support the 
elevator against gravity but also to provide the needed upward acceleration. Using 
Newton’s second law, we have WFmaF T −== . Inserting the mass of the 
elevator containing the man and their acceleration, we have 

( ) Newtons912
second
meters.8kg1030kg110 2 =×+==− maWFT . This is the net 

force acting on the elevator. Using this and the weight we found earlier, we get 
Newtons12,084Newtons912Newtons11172 =+=TF . 

 



 

5. A man is standing in a train accelerating at 2second
meter1.0 . He drops a 

nickel (m=5 grams) from a height of 1.5 meters. In his frame of 
reference, what force appears to act on the nickel? How far off the 
vertical path is the nickel deflected by the time it strikes the ground? 
Sometimes we introduce a non-inertial frame of reference simply because a 
human observer is involved and it is in our psychological makeup to define 
whatever space we are in as a good frame of reference. We usually know that the 
frame that we’re in is accelerating, but our brains are essentially egocentric—
they’re hardwired to think of forces as acting on us rather than to think of us as 
flying about, according to Newton’s first law, and having our environment change 
around us. Other times, we’ll introduce a non-inertial frame because purely 
pragmatic considerations make it more convenient to do so (this is rare). 

In either of these cases, what we must be aware of is that objects within the 
frames will behave as though forces are acting on them that simply don’t exist. 
Someone with “x-ray vision” standing in an inertial frame (for example, standing 
on the ground outside of the train) looking through the walls of the train in this 
problem would see the nickel fall down while retaining whatever forward velocity 
the train had at the instant the nickel was released. Relative to the Earth, the path 
of the nickel would have the same shape, for the same reason, as the bomb that we 
studied in Problem #8 of Assignment #4. He would see that the train is 
accelerating relative to the nickel just as it does relative to the Earth. This is a key 
feature of non-inertial frames of reference and a distinction between them and 
inertial frames: All observers, in whatever frame, recognize that a frame is non-
inertial and agree on the size and direction of its acceleration. As we have seen, 
there is no observation that someone can make to distinguish whether one or 
another inertial frame is “really” moving. 

So the reality really is that the train is accelerating while the nickel is moving with 
a constant velocity (in the  direction—everyone will agree that it is accelerating 
in the  direction due to gravity). But it is natural for the man to regard the train 
as a reference frame. Relative to the train, it is the nickel that accelerates despite 
the fact that relative to an inertial frame it is the other way around. 

x̂
ŷ

Since we are free to pick any inertial frame we want, we have a couple of obvious 
choices for analyzing this problem: We can consider this problem from a frame 
fixed to the Earth or we can consider it from a frame moving, relative to the Earth, 
with the velocity of the train at the instant the nickel is released. Please recognize 
that either of these frames is inertial and so is equally valid. Let’s work in the 
frame that has the same velocity as the train relative to the Earth at the instant the 
nickel is released. 

As soon as the man lets go of the nickel, it begins to fall. In our inertial frame, the 
nickel drops straight down. (If we’d picked the Earth-fixed frame, the nickel 
would have the same parabolic path as the bomb in the prior assignment.) Once 



the man is not holding on to the nickel, there is no force keeping the nickel in the 
man’s reference frame. So the man’s reference frame (the train) accelerates 
relative to the nickel. The nickel gets “left behind” in some sense. The train 

accelerates away from the nickel at 2second
meter1.0  in the  direction. In the frame 

of the train, the nickel seems to accelerate in the opposite direction, at 

x̂

2second
meter1.0  in the  direction. To this, we should add the acceleration due to 

gravity, which both the man and an observer in any inertial frame would agree is 
acting on the nickel. Thus, the total apparent acceleration (in the non-inertial 

frame) is 

x̂−

yxygxaa xinertialnon ˆ
second

meter8.9ˆ
second

meter1.0ˆˆ
22 −−=+=−

v .  

Of course, the man sees the nickel accelerate and concludes that something has 
shoved it. What did the shoving? Nothing—it didn’t get shoved at all. But when 
we observe something to accelerate we infer that a force has acted on it. If the 
acceleration is just due to the frame being non-inertial, this inferred force is called 
a “fictitious” force. This fictitious force acts along with gravity. The force which 
appears to be acting on the nickel in the non-inertial frame is just 

yNxN

yxkgymgxmaF x

ˆ109.4ˆ105

)ˆ
second

meter8.9ˆ
second

meter1.0(005.ˆˆ
24

22
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To determine how far off the vertical path the man views the nickel as traveling, 
we use the same technique as we did for the bomb problem: We use the height 
and the acceleration of gravity to determine the time it will take for the nickel to 
hit the ground. We’ll then use this time to calculate the distance the nickel will 
travel horizontally. The crucial difference between the two cases is that we must 
include the fact that the nickel is accelerating horizontally when calculating the 
horizontal distance traveled—this is very much like the rocket problem in 
Assignment #5. Since vectors which are perpendicular to each other are 
independent of each other, this will have no effect on the time it takes the nickel 
to fall, however. 

The time for the nickel to hit the ground can be found from the now-familiar 

relation 2

2
1 gth =  where I’ve just skipped a couple of steps and substituted g for 

the acceleration and the initial height of the nickel for the distance traveled. This 

gives us s
g
ht 55.0

second
meters8.9

meters5.122

2

=
×

== . Now, we once again use our 

distance-traveled relation to calculate the x distance traveled under the 
acceleration of the fictitious force. This gives 

( ) xsxtax x ˆmeters015.055.0ˆ
second

meter1.0
2
1

2
1 2

2
2 −=××−== . 



 

6. A car is traveling at a constant speed of 
second
meters4.23  around a perfect 

circular, perfectly horizontal track. The radius of the track is 63 
meters. A cup of coffee with a total mass of  sits on the 
dashboard of the car. The dash is perfectly flat and horizontal. What 
is the magnitude of the force the cup appears to experience in this 
non-inertial reference frame? What coefficient of friction between the 
dash and the cup is necessary to keep the cup from sliding off the 
dash? 

grams300

Calculationally, this problem is a piece of cake! Conceptually, it’s a bit 
harder. Let’s walk through it. In order for any object to travel in anything but a 
straight line, it must be accelerated. This is true even if the speed remains 
constant. We’ve already dealt with the problem of figuring out the frictional force 
needed to keep the car on the track. Thus, the car receives a centripetal 
acceleration via its interaction with the track. The result of that is to turn the car, 
itself, into a non-inertial reference frame for anything inside of it. By Newton’s 
first law, the cup of coffee is going to move in a straight line at a constant speed 
unless a net, external force acts on it. That force must be provided by something. 
The coffee cup doesn’t care what the car does—it’s going to move in a straight 
line at constant speed. Within the frame of reference of the car, this makes it 
appear that the coffee cup is experiencing a force, even though it’s not. In order to 
keep the cup from accelerating in the non-inertial frame of reference, a force must 
be applied to it by something: The dash, a cupholder, the driver’s hand—
something. 

Another way of looking at this, which is more obvious when one is looking 
at the problem on a sheet of paper but less obvious when one is sitting in the car, 
is that the cup must receive the same centripetal acceleration as the car if it is to 
move in the same circle and at the same speed as the car. The car gets its 
centripetal acceleration from friction with the ground. The cup must get its 
centripetal acceleration from friction with the dash. 

The centripetal force the cup requires is 
r

mvFc

2

=  directed toward the 

center of the track. In the non-inertial frame of the car, this is equivalent to saying 

that the cup experiences a fictitious force of 
r

mvFfictitious

2

=  directed away from 

the center of the track. Plugging in numbers, this is 

Newtons6.2
meters63

second
meters4.23kg3.0

2

2

=
⎟
⎠
⎞

⎜
⎝
⎛×

==
r

mvFfictitious  directed away from the 

center of the track. 



Since this force is provided by friction, we have NF
r

mvF sFc µ===
2

 

(again, we use the equality because we want the maximum force—don’t get 
complaisant with this!). Now, since the dash is perfectly horizontal and there is no 
acceleration in the  direction (draw a free-body diagram of this for reference), 
the normal force has the same magnitude as the weight of the cup (another 
warning about complacency! the normal force does not have anything to do with 
gravity, in general, they just wind up related in many problems). Thus, we can 

write 

ŷ

mg
r

mv
sµ=

2

. A bit of algebra then gives 

89.0

second
meters9.8meters63

second
meters4.23

2

2

2

=
×
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sµ . This is quite a large coefficient of 

friction! Better hold on to that cup. 

 

7. A roller coaster is built with four “humps,” as shown. The hump from 
which the coaster is launched is 40 meters tall. The second hump is 
30 meters tall. The third hump is 20 meters tall. The final hump is 10 
meters tall. Assuming the coaster is launched with negligible initial 
speed, what is the speed at the top of each of the humps? What is 
the speed at the exit (at a height of zero)? Assume no friction. 

The key to this problem is to recognize that the total energy of the system is 
conserved but that it changes form as the system evolves. That is, we can write at 
any time , or, in English: The sum of the potential energy 
and the kinetic energy is always equal to the same thing. Solving the problem now 
simply boils down to figuring out what the constant is and how it is split between 
kinetic and potential energies. 

constantEPEK =+ ....

Let’s begin with the K.E. at the top of the first hump. At the very beginning, 
the coaster isn’t moving, so its K.E. is zero. Thus, the constant is just whatever the 
P.E. is. Now, we are free to pick the zero-point of P.E. to be anywhere we’d like, 
but, having made that choice, we must stick with it. Two choices that would make 
sense would be to pick the top of the first hump as the zero of P.E. or the very 
bottom of the coaster—at the exit. If we pick the top of the first hump, then P.E. 

Start 

Exit 



will be negative through the rest of the problem. This isn’t a big deal, as long as 
we keep track of the minus sign. But it’s one more thing to worry about and I 
have enough to worry about as it is, so let’s pick the bottom of the coaster. 

Now, remember what potential energy is: Potential energy is energy 
representing work which has been done on the system but which is still available 
to the system. (If it becomes negative, then we can think of it as a debt which 
must be paid back to get back to zero. No problem: There’s no interest on that 
kind of loan.) So if we think of the ground as P.E.=0, then some work had to be 
done to get the coaster up to the top of the first hump. 

“But, Jack,” you say, “we don’t know how the coaster got to the top of the 
hump! How can we calculate the work done to get it there?” Good question! 
Fortunately, the answer is very simple: It doesn’t matter! I strongly recommend 
that you try working another problem (maybe I’ll stick it on another homework 
assignment): “Calculate the work done sliding a block of mass m up a 
frictionless ramp which has an angle θ with respect to the horizontal. Slide it 
a distance such that its height above the beginning point is h.” If you do this, 
you will find that the work is identical to the work you would have to do to lift the 
block straight up to the same height. Remember: It’s only the component of the 
force in the direction parallel to the distance traveled that matters when 
calculating work! So the fact that a path was taken that includes motion sideways 
is totally irrelevant. This can be summarized in a very important and powerful 
general rule (MEMORIZE THIS!): If there are no dissipative forces present, 
the work needed to change the potential energy of an object depends only on 
the beginning point and the end point. The path taken in going from the 
beginning to the end does not matter. So, we don’t care how the coaster got to 
the top of the first ramp. Let’s just calculate the work done to get it there from the 
ground taking the simplest route: Straight up. 

The force of gravity, as we’ve seen before, is mgF =  and it is directed 
straight down. In order to lift something up, therefore, we must exert a force of 

 straight up on the object. Somebody, sometime, exerted this force (at 
least as a component of a force in some other direction). They exerted it lifting the 
coaster up a distance h to the top of the first hump. So the work done lifting the 
coaster is 

mgF =

mghdFW =⋅=
vv

. Now, this work does not show up as kinetic energy—
the coaster isn’t moving just yet. But we can get this back—indeed, the problem 
is based on this assumption. So the potential energy at the top of the first hump is 
equal to the work done getting the coaster there and we can say  mghEP =.. .

Please, oh please, do not fall into the trap of memorizing this as a formula 
and then regurgitating it at an inappropriate time. (Inappropriate regurgitation can 
be messy!) This is the potential energy of a mass lifted up a height near the 
surface of the earth. It is not a universal formula for potential energy! Be careful 
that you understand why it is what it is and then use it only when appropriate. 

So, we know the K.E. at the top (zero) and the P.E. as well (mgh), so we 
know the constant: mghconstantconstantEPEK =⇒=+ .... . Now, another 



trap: The height expressed in this constant is the height of the first hump. The 
thing which makes a constant a constant is the fact that it doesn’t change (duh!). 
So don’t go changing h to be whatever the height is at some particular instant. For 
clarity, let’s write this as 1mghconstant = , indicating that it’s the height of the 
first hump that matters. 

Using the same argument as we used above, the potential energy at any 
height will be , but this will be different from the constant set at the 
beginning. Also, at any point, the kinetic energy will be 

mghEP =..
2

2
1.. mvEK = . So, 

everywhere in this problem we can write 
1

2
2
1.... mghmghmvconstantEPEK =+⇒=+ . Now we’re ready to get some 

answers. 

For convenience, let’s cancel the m that appears in every term. Since we’re 
asked for the speed at the top of each hump, we can write )( 1

2
2
1 hhgv −= . Notice 

that it’s the difference in P.E. that matters (see the “Work-Energy theorem”). 
That’s why we can pick the zero anywhere we want. It’s always going to be the 
difference (or change) in P.E. that matters, never it’s absolute value. 

Solving for v, we get ( )hhgv −= 12 . And from here it’s just “plug and 
chug”: At the second peak (h=30 meters) the difference in height is 10 meters, so 

( )
second
meters14meters10

second
meters8.922 21 =××=−= hhgv . 

At the third peak the difference in height is 20 meters, so 

( )
second
meters8.19meters20

second
meters8.922 21 =××=−= hhgv . 

At the fourth peak the difference in height is 30 meters, so 

( )
second
meters2.24meters30

second
meters8.922 21 =××=−= hhgv . 

Finally, at the exit, all of the original P.E. is turned into K.E. so we have 

second
meters28meters40

second
meters8.922 21 =××== ghv . Notice that the equation 

we have here is just another way of writing , which we worked with 
earlier this semester, before we had the concept of energy. This is no surprise: 
Remember that potential energy is energy representing work done on the system 
that is still available to the system. When we get it all back, it’s as though we did 
the work directly—accelerating the object up to a speed v with a force ma exerted 
over a distance d. The advantage of the new system is that we can do the energy 
calculation using only scalars. 

adv 22 =



 

8. Refer once again to the roller coaster above. What is the gravitational 
potential energy on each of the humps and at the exit? 

This is just a shot at repetition (“practice makes permanent”). At each 
height, the gravitational potential energy (potential energy from work done 
against gravity) is just mgh. Since we don’t know the mass of the car, all we can 
do is solve this symbolically. So at the first peak it’s 

meters40
second
meters8.9.. 21 ××== mmghEP . 

At the second peak it is meters30
second
meters8.9.. 22 ××== mmghEP . 

At the third peak it is meters20
second
meters8.9.. 23 ××== mmghEP . 

At the fourth peak it is meters10
second
meters8.9.. 24 ××== mmghEP . 

And, finally, at the exit it is zero. All this assumes that we took the zero of 
P.E. to be at the ground. If we’d picked some other height, we’d have to add or 
subtract accordingly. 

 

9. A man drags a heavy box across the floor at a constant speed using 
a rope. The rope makes an angle θ with the floor. The man exerts a 
force FT on the rope. If he walks a distance d, how much work does 
he do? 

The work done by a force F
v

 moving an object a distance d
v

 is defined to be 
)cos(θFddFW =⋅≡

vv
. Here, θ is the angle between the force and the direction 

the object travels. Thus, the work done by the man is simply )dcos(FT θ=W . 
Sorry if that was too easy! 

 

10. For the previous problem, assume the box has a mass of 15 kg, 
θ=17°, FT=75 N, and d=6 meters. Now how much work does he do? 

J.430)cos(17m6N75)dcos(FT =°××== θW  

11. In the previous problem, is there an angle and an FT such that the 
man could do no work moving the box across the floor? Explain. 
Yes: If the man lifts straight up on the rope, the angle between the rope and the 

direction of travel is 90°. The cosine of 90° is zero, so no work is done. He would have to 
exert enough force to exactly cancel gravity so that the Normal force would be zero, 
otherwise there would be friction and he’d have exert some forward force to cancel it 
(hence the rope would not be at 90° anymore). 



This seems like a trick, or at least trivial, problem. In fact, it’s intended to drive 
home the notion that work, in the sense used in Physics, has very little to do with the 
amount of effort a human being puts forth to accomplish a task. Beware of falling into the 
trap of letting your intuition rule your solutions! 

12. Instead of dragging the box, the man in problem #9 gives the box a 
mighty shove such that it slides across the floor at speed v. (He 
doesn’t touch the box after giving it the shove.) If the coefficient of 
sliding friction between the box and the floor is µk, how far does it 
slide? Use energy considerations to calculate this. 

This problem is intended to illustrate the concept of work and its relation to energy: 
The work done by a force (it does not need to be a net force) is the product of that force 
and the distance an object travels in the direction parallel to the force. After the man 
shoves the box, I see three forces acting on it: Gravity pulling down, the Normal force 
countering gravity, pushing straight up, and friction (draw a free-body diagram!). Friction 
always acts to counter motion, so the friction force is exactly opposite in direction to the 
motion of the box. 

Now, when work is done on something it changes the energy of that thing. In some 
cases, the work simply changes the distribution of energy between kinetic and potential: 
The work represents energy previously put into potential energy or it represents an 
increase in potential energy. In this case, however, the potential energy does not change. 
The only work being done is done by friction. And friction is a dissipative force—a force 
that removes energy from the system. So friction removes energy from the box. What 
energy does the box have? It has the kinetic energy given to it by the man! By how much 
does this change? It goes from 2

2
1.. mvEK =  to 0. So 2

2
1 mvW −= . (The minus sign 

come in because we’re looking at the change in K.E. It goes from something to nothing, 
so the change is that it gets smaller and hence is a negative value.) 

That tells us the total amount of work done, now we have to relate that to the 
distance traveled. But the relation between work and distance traveled is a very natural 
one, since the distance traveled is built in to the very definition of work. 

( )θcosFddFW =⋅=
vv

. But in this case, the force is in the exact opposite direction to the 
distance traveled so °== 180radπθ  so 1)cos( −=θ . (You really don’t need to go 
through all the trig on this one. Just remember that when the force is opposite in direction 
to the distance traveled the work is negative.) All we need now is the force. But the force 
is that of sliding friction and we know that this is NF kµ= , where N is the Normal force. 
Since there is no acceleration up or down, the Normal force must exactly cancel gravity. 
So we can write  (don’t just automatically write “mgN = mgN = ”! we have a reason 
for concluding this in this case; it won’t always be true and I will attempt to get you to 
fall into the trap of assuming that it is true when it isn’t on the next exam) which allows 
us to write mgdW kµ−= . But, from before, we also know that 2

2
1 mvW −= , so we can 

write 2
2
1 mvmgdk −=− µ . A teeny bit of algebra gives 

g
vd

kµ2

2

= . 
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