
PHYSICS 206a 
HOMEWORK #4 

SOLUTIONS 
 

1. Starting with Newton’s second law, determine the unit of force in the 
SI system. Express this in terms of the fundamental units of that 
system. This unit is called the “Newton” and is abbreviated by the 
letter “N”. 

Newton’s second law is just the equation amF vv
= . Let’s invent a bit of 

notation to do this problem. Let’s indicate the units of a quantity by putting that 
quantity in square brackets. For example, if we want to say “the units of velocity” 

we would write [ ]
second
meters

=vv . Using this notation, we want to know [ ]F
v

. Since 

units follow the rules of algebra, we can simply write [ ] [ ][ ]amF =
v

. Since 

and [ ] kilograms=m [ ] 2second
meters

=av , the unit of force is [ ] 2second
meterskilogram=F

v
. 

So 2second
meterkilogram11 =N . (Some of you may be wondering about the use of 

the plural in units. E.g., I switched from “meters” to “meter” above. Really, there 
is no solid rule on this. Since “meter” is an English word, it would sound odd to 
leave the plural off. It makes no difference and not too much effort should be 
spent thinking about it.) 

2. A car travels at 
second
meters26  oriented 30 degrees north of east. It travels 

for 3 kilometers. It then turns so that it is oriented to the south. It 
travels at the same speed. If another car departs from the same point 
as the first one at the same time as the first one and travels directly 
east, how fast does it have to travel if the two cars are to collide? 

3 km 

30°

N 

E 



Clearly, the second car will travel due East only. So the collision can only occur 
when the first car crosses the East axis. Thus, the first thing we want to know is where on 
the East axis this will be—let’s call that x. From the picture, we see that this will occur at 

. km2.6)cos(30km3 =°×=x

Likewise, the collision can only occur at the time the first car crosses the East axis. 
Its trip has two segments. The first one is at the 30° orientation and the second one is due 
South. Let’s solve for the time for each segments separately. From the definition of speed 

t
sv =  (using s to stand for the distance traveled), we can write 

v
st =  using a distance of 

3 km and a speed of 
second
meters26 , this gives seconds4.115

second
meters26

meters3000
===

v
st . The 

second leg of the trip is due South. From the picture we see that the length of this is 
. Again using our definition of speed, we get the time 

for this leg to be 57.69 seconds. Adding the two times together, we get the total time of 
the trip to be 173.1 seconds. 

meters1500)30sin(km3 =°×=s

So, the second car needs to travel 2.6 km in 173.1 seconds to collide with the first 

car. This gives a speed of 
second
meters15

seconds173.1
meters2600

===
t
sv . 

3. What is the net force acting on a hockey puck sliding on the ice at a 

constant velocity of 
s
m10 in the  direction? Explain your answer in 

terms of Newton’s laws. 

x̂

This is so straightforward that it’s almost confusing. Scientific predictions don’t just 
work in one direction. They work both ways. This is a very important feature of Science. 
In other words, if a theory predicts that a certain situation will result in some particular 
outcome, it also requires that observation of the outcome allows one to presume the 
cause. This is an example of that principle: Newton’s first law predicts that an object in 
motion will remain in motion in a straight line at a constant speed unless a net external 
force acts on it. Therefore, if we observe something to move in a straight line at a 
constant speed we can infer that there is no net force acting on it. Newton’s second law 
puts this in quantitative form. (Newton’s second law does more than just allow us to 
attach a number to the predictions of Newton’s first law. It also states that the response of 
an object to a force does not depend on the particular nature of the force or the object. 
Only the size and direction of the force and the mass of the object matter. This seems like 
a trivial statement to our modern perspective, looking at it 319 years after Newton 
published it, but it’s quite profound historically. Prior to Newton, the fact that an apple’s 
fall and the orbital motion of the moon lacked any significant difference would have been 
considered unthinkable!) The net force acting on the puck is zero. 



4. Find the magnitude and direction of the net force on the object in 
each of the free-body diagrams in the figure below. 

I think most people got this one without too much effort: Just subtract forces 
pointed in opposite directions. Forces (indeed, all vectors) which act 
perpendicularly to each other act independently of each other. The results are: 

(d) 

10 N 

17 N 

(c) 

10 N 
10 N 

17 N 

(b) 

17 N 
10 N 

17 N 
10 N 

(a) 25 N 10 N 

a)  xNxNxNF ˆ15ˆ10ˆ25 =−=
v

b)  (no net force) 0ˆ17ˆ17ˆ10ˆ10 =−+−= yNyNxNxNF
v

c)  yNyNxNxNF ˆ17ˆ17ˆ10ˆ10 −=−−=
v

d)  (Nothing to be done here—two perpendicular 
forces simply added together.) 

yNxNF ˆ17ˆ10 −−=
v



5. Refer again to the figure in problem #4. If the objects all have a mass 
of 1.7 kg, what is the acceleration experienced by them in each case? 

Here we apply Newton’s second law: amF vv
= . Simply divide each force by 

m to find the acceleration. 

a) x
kg
xNa ˆ

second
meters82.8

7.1
ˆ15

2==v  

b) No net force so no acceleration. 

c) y
kg

yNa ˆ
second
meters10

7.1
ˆ17

2−=
−

=v  

d) yx
kg

yNxNa ˆ
second
meters10ˆ

second
meters88.5

7.1
ˆ17ˆ10

22 −−=
−−

=v  

6. Yet again, refer to the objects shown in problem #4. After 13 
seconds, what is the velocity of each object? At that same time, what 
is the position vector (assuming the objects all begin at the origin) 
for each object? 

For the velocity, since the acceleration is constant, we can simply use the definition 

of acceleration 
t
va
v

v ∆
= . That is, the acceleration is the change in the object’s velocity 

divided by the time over which that change occurred. In this case, the change occurs over 
13 seconds. Now, an important point which I’m sure most of you missed: Nothing was 
stated about the original velocity! If you assumed that the initial velocity is zero, then this 
assumption needs to be stated in your solution. The final velocity is the initial velocity 
added to the change in velocity. Note that the fact that the objects start at the origin says 

nothing about their velocities! Be careful! So 
t
vv

a originalfinal
vv

v −
=  and a little algebra gives 

us originalfinal vtav vvv += . Taking the time to be 13 seconds and using the accelerations found 
in the previous problem, this gives 

a) originaloriginaloriginalfinal vxvxvtav vvvvv +=+×=+= ˆ
second
meters7.114ˆsecond13

second
meters82.8 2  

b) originalfinal vv vv =  

c) originaloriginaloriginalfinal vyvyvtav vvvvv +−=+×−=+= ˆ
second
meters130ˆsecond13

second
meters10 2  

d) 
original

originaloriginalfinal

vyx

vyxvtav

v

vvvv

+−−=

+×−×−=+=

ˆ
second
meters130ˆ

second
meters44.76

ˆsecond13
second
meters10ˆsecond13

second
meters88.5 22

 



Next, we must find out where these objects are after 13 seconds. The total motion 
will consist of two parts: The motion due to the original velocity, which the object would 
have whether it accelerates or not, and the motion due to the “extra” velocity it “gains” 
due to the acceleration. I put those words into quotes since the acceleration can be in the 
direction opposite to that of the original velocity. Thus, the “extra” and “gain” would be 
negative. Since we are told that they start at the origin, we don’t need to keep track of an 
initial position—at least one thing off our minds! 

We have a formula for dealing with the distance objects travel while accelerating. It 
is tvatx original+= 2

2
1 . Note that I’ve left the original position off since we don’t have one 

in this problem. Also, I’ve written this down in one dimension only. If we have an 
original velocity or an acceleration in two dimensions, we do what we always do with 
two-dimensional vectors: Break them into perpendicular components and then treat each 
one independently as a one-dimensional problem. Remember: Vectors which are 
perpendicular to each other are independent of each other! 

Using this formula and the values for the acceleration found in the previous 
problem, we have 

a) 
seconds13ˆmeters3.745

seconds13ˆsecond169
second
meters41.4 2

2
2

2
1

×+=

×+×=+=

original

originaloriginal

vx

vxtvtaD

v

vvvv

 

b)  seconds13×= originalvD vv

c) 
seconds13ˆmeters845

seconds13ˆsecond169
second
meters5 2

2
2

2
1

×+=

×+×−=+=

original

originaloriginal

vy

vytvtaD

v

vvvv

 

d) 

seconds13ˆmeters845ˆ497

seconds13ˆsecond169
second
meters5ˆsecond169

second
meters94.2 2

2
2

2

2
2
1

×+−−=

×+×−×−=

+=

original

original

original

vyxmeters

vyx

tvtaD

v

v

vvv

 



7. In your lab exercise (#3 on Jan. 29-30), you place a mass on an 
inclined airtrack. In class, I will derive the acceleration of the mass 
using a coordinate system with one axis parallel to the track. Derive 
an expression for the acceleration of the mass (the cart) as a 
function of the angle of the incline using the “usual” coordinate 
system, i.e., one in which the y axis is in the direction of gravity. 
Draw a free-body diagram of the cart and determine the forces (both 
size and direction) in this coordinate system. You may consider the 
mass of the cart to be simply “m”. 

A colleague of mine saw this problem and said “ah, you’re using the same 
technique I used to train my dog not to go near the hot stove: You’re letting them 
get burned so the pain educates them!” Indeed, that is my primary goal in this. 
The choice of an inappropriate coordinate system can render a trivial problem all 
but unworkable. 

Before we discuss how to solve this problem using the “wrong” coordinate 
system, let’s see how we can know which system to use. I’ve drawn the system 
above using the “right” coordinate system. Notice that, by the nature of the 
problem, the mass is constrained to remain on the surface of the incline. Any 
motion of the mass, therefore will be in the  direction, if we choose it to be 
parallel to the surface. Our problem will only require one force and one 
acceleration. Compare this with the same problem using the “wrong” coordinate 
system: 

x̂

N
v

W
v

x̂
θ 

ŷ



Now, a point on the surface of the incline will necessarily be described by 
both an x  and a  coordinate. All motion along the surface will be 2-d. We’ve 
got a big mess on our hands! 

y

Let’s dig in and see where this takes us. As discussed above, we’ll have to 
decompose the acceleration into two components since the motion is constrained 
to the surface of the incline. Before we do this, let’s decompose the forces into 
their components. The weight is all in the  direction, so that’s easy. The normal 
force, on the other hand, makes an angle θ relative to the  axis. (Prove this to 
your satisfaction. Come see me if you’re not certain about this—perhaps I’ll write 
up the proof for you and post it later.) 

ŷ
y

Let’s discuss the normal force for a moment. The Normal force is a weird 
thing. It’s a catch-all for what is actually a whole set of forces. But, in a 
macroscopic problem like this one, we can lump them all together. Basically, the 
Normal force is the force which acts perpendicularly to a surface (hence the 
name) in reaction to the force exerted on that surface by some other object. The 
important features of the Normal force are 1) that it acts exactly perpendicular to a 
surface and 2) that it takes whatever size it needs to to counter some other force. 
For example, if you lean on a wall, you exert a force on the wall. More 
importantly, the wall exerts a force on you. That force is exactly the same size as 
the force you exerted on the wall in the first place, no more and no less. (This is a 
result of Newton’s Third Law which we haven’t discussed yet but will get to 
soon.) 

Decomposing the normal force, we have the situation picture below. 

 

θ 

N
v

W
v

x̂

ŷ



 

Now, notice a possible source of error here: We usually define our angles 
relative to the x axis. In this case, we happen to know an angle relative to the y 
axis, so we’ll use this instead. This means that the x component will depend on 
the sine of the angle, rather than the cosine and similarly for the y component. We 
certainly could use our familiar decomposition method—we’d just have to use 
90°- θ  as our angle. But this is an extra bit of work. I’ll stick with the angle we’ve 
got. We have  

)cos(
)sin(

θ
θ

NN
NN

y

x

=
=

 

Adding forces together, we have 

)sin(
)cos(

θ
θ

NF
WNWNF

x

yy

=
−=−=

 

We now have two equations but three things that we don’t know (
and N). The rule is that we need to have as many equations as unknowns if we are 
to be able to solve the system. We’ll need something else. Fortunately, we do 
have something else. We have a relation for the acceleration. 

yx FF ,  

The acceleration, as stated above, is constrained to the surface of the incline. 
So we must have the situation depicted below: 

N
v

x̂

θ 
yN
v

xN
v

ŷ

av

ŷ

x̂

xav

yavθ 



Notice the for the acceleration, we do have the usual decomposition 

)sin(
)cos(
θ

θ
aa

aa
y

x

−=
=  

Here we’ve had to be very careful about the sign on the y component: We’re 
taking θ to be a positive angle, since that’s what it was defined as initially. But for 
the decomposition of the acceleration, the angle appears in the negative sense. 
Don’t apply “formulas” blindly! 

Now we can use Newton’s second law to relate the forces to the 
accelerations: 

)cos()sin(
)sin()cos(

θθ
θθ

maNF
maWNWNF

x

yy

==
−=−=−=  

Notice that we now have two equations and only two unknowns: a and N. 
We don’t care about N, so let’s rearrange the second of these two equations to 
solve for N (I know, that sounds like the exact opposite of what you want, but 
follow along). We can then substitute the result for N in the first equation. Here 
we go: 

)sin(
)cos(

θ
θmaN =  

Which gives 

)sin()cos(
)sin(
)cos( θθ

θ
θ maWma −=−  

Hey! Look what we’ve got: One equation with only one unknown—a. This 
is what we want. So let’s rearrange the equation to solve for a. I’ll do this step-by-
step, but without narrative since you should be able to follow the algebra: 

Wmama =+ )sin()cos(
)sin(
)cos( θθ

θ
θ  

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ +
==

)sin(
)(sin)(cos 22

θ
θθmamgW  

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

=
)(sin)(cos

)sin(
22 θθ

θga  

For the final step, we’ll need a relation taught early on in a Trigonometry 
course but which I haven’t taught you yet. Let’s use our definitions of the trig 
functions: SOHCAHTOA and add  and . We have )(sin 2 θ )(co 2 θs

2

22

2

2

2

2
22 )(sin)(cos

H
OA

H
O

H
A +

=+=+ θθ  



But, the theorem of Pythagoras says that , so 222 AOH +=

1)(sin)(cos 2

2

2

22
22 ==

+
=+

H
H

H
OAθθ  for all angles! This is a very powerful 

relation which I recommend you memorize. 

Using this, we can write  

)sin(
)(sin)(cos

)sin(
22 θ

θθ
θ gga =⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+

=  

This is exactly the same as we found using the “right” coordinate system, as 
it must be, but way more work! 

8. An airplane is flying at a height of 50,000 meters at a constant 

velocity of 
second
meters260 in the  direction. A bomb is dropped out of it. 

The bombardier wishes to strike a target which is at 
. At what 

x̂

meters000,100=x x  coordinate should the airplane be for the 
bomb to hit this target? Assume no air-resistance for the bomb. 
Explain your answer. 

To do this problem, we recall a rule that I’ve stated many times this semester: 
Vectors which are perpendicular to each other are independent of each other! We break 
vectors apart into components which are perpendicular to each other specifically so that 
we can take advantage of this rule. In this case, the velocity of the bomb has an  and a 

 component. We deal with these separately and each will give us specific information 
about the problem. 

x̂
ŷ

Before the bomb is dropped, it has whatever velocity the airplane has relative to the 
ground. Looked at a different way, in a coordinate system fixed to the airplane (which is 
an inertial frame of reference since it is not accelerating), the bomb has a velocity of zero 
before it is dropped. According to Newton’s first law, it will retain this velocity unless a 
net, external force acts on it. Thus, unless a net, external force acts on the bomb, it will 
always have a velocity of zero in the coordinate system of the airplane. 

When the bomb is dropped, it has only one force acting on it: That of gravity. It, 
therefore, accelerates. Gravity acts only downward—in the ŷ−  direction. So, from the 
perspective of the ground, the airplane will have a velocity with an  component which 

doesn’t change and a  component which increases downward by 

x̂

ŷ 2second
meters8.9 . From 

the perspective of the airplane, the bomb still has no velocity in the  direction—there’s 
no acceleration in that direction. The acceleration will be the same as that seen from the 

ground: 

x̂

2second
meters8.9  in the downward direction. (Note that this is a general rule: 

Changing from one coordinate system to another can change velocities, but it will never 
change acceleration as long as the coordinate systems are not accelerating. Non-
accelerating coordinate systems are called “inertial.” As we’ve discussed many times this 
semester, we are totally free to pick any inertial coordinate system we like. There is no 



experiment we can perform which can conclude that one is “right” and another one is 
“wrong.” We can never say that one is moving and the other is standing still. On the other 
hand, if we have one system which is accelerating and another one which is not 
accelerating, we can determine which one is accelerating and which one is not. Further, if 
both are accelerating, we can determine each ones acceleration in an absolute sense. We 
will explore this in a future problem set.) 

We can use the acceleration in the  direction and the fact that we know the initial 
height of the airplane to calculate the time it will take for the bomb to hit the ground. 
Since it has no initial velocity in the  direction, we can write 

ŷ

ŷ haty == 2
2
1  where h is 

the height of the airplane at the instant the bomb is released. Using 2second
meters8.9−  for a 

and  for h (the acceleration is negative because it’s pointing downward; 
we use a negative number for the height since we’re interested in the time to go down that 
distance but “height” is usually measured upward) we have 

meters000,50−

seconds101

second
meters9.8

meters5000022

2

=
×

==
a
ht . 

Note how large this is. I used a realistic number for the height of the airplane—
maybe not for a bomber, but for a passenger jet. This is more than 1.5 minutes of falling! 
(Indeed, in a real situation, air resistance would make it fall even longer.) The airplane 
will travel a really long distance in that time. Since the  component of the bomb’s 
velocity is unaffected by the acceleration, the bomb will travel the same distance forward. 

Assuming the airplane has a velocity of 

x̂

xVA ˆ
second
meters260=

v
, the distance the bomb will 

travel in the  direction in a time t is just x̂ tVd Ax = . So, the airplane must release the 

bomb meters102.626seconds101
second
meters260 4×=×== tVd Ax  before the target (this is 

about 16 miles—for you folks who are still uncomfortable with kilometers). Since the 
target is at , this means that the airplane’s x coordinate must be 

 in order to strike the target. 
meters000,100=x

meters107.374meters102.626meters000,100 44 ×=×−=x

9. What is the velocity with which the bomb in problem #8 will strike the 
target? 

We know the  component of the bomb’s velocity already—it’s the same as that of 
the airplane. We can easily find the  component since we know the acceleration in the 

 direction and we know the time it takes to fall. We have 

x̂
ŷ

ŷ

second
meters8.989seconds101

second
meters8.9 2 −=×−== atVy . So the total velocity on impact 

will be yxVbomb ˆ
second
meters8.989ˆ

second
meters260 −=

v
. 



I’ll reiterate something I’ve been beating on you about all semester: This is a vector. 
You can go no further. It is certainly possible to restate this in terms of an overall speed 
and an angle, but there is no reason to do so—this form of answer is perfectly acceptable 
unless you are specifically asked for something else. Whatever you do, do not go and turn 
this into a scalar! That would turn a perfectly good, correct answer into an incorrect one. 

10. A baseball is thrown with an initial velocity of 
second
meters40  at an angle 

of 53° relative to horizontal. 
a. How long after it is thrown will it reach a height of 10 meters 

while traveling upward? 
b. How long after it is thrown will it reach its maximum height? 
c. What is its maximum height? 
d. How long after it is thrown will it reach a height of 10 meters 

while traveling downward? 
e. How long after it is thrown will it hit the ground? 
f. How far away from the thrower will it be when it hits the 

ground? 
g. What will its velocity be when it hits the ground? 

We now have a combination of several problems that we’ve done previously. Here 
we have a velocity given to us in two dimensions. We know how to deal with this, 
however: Break the vector up into its perpendicular components! The components can 
then be dealt with independently. Let’s do the vertical component first. 

a. Since the problem doesn’t state anything to the contrary, we should assume the 
ball starts at a height of zero. Before solving this explicitly, let’s think about its path. It 
will accelerate in the -y direction. Starting with an initial upward velocity, it will slow 
down, stop, and then come back down. A plot of its height as a function of time will look 
something like: 

Interestingly, since the x position is going to vary linearly with time (i.e., we’re going 
to have ) a plot of y vs. t will have the identical appearance, except for a 
“stretching” of the x axis, to a plot of y vs. x, which is just a picture of the overall 
trajectory. (As a challenge to yourself, recast the solution for  into a  form. I 

tvx x=

)(ty )(xy

y 

t 



considered putting this on as a homework problem and may decide to do so in the 
future.) 

Note the figure above. We can see from the dotted line that, for a given height, there 
will be two times (or x positions) at which the ball will have the same height. This is 
obvious, but it’s worth saying anyway. We’ll see why in a minute. Let’s figure out the 
times at which it will have a particular height. Assuming that it starts at , we have 00 =y

tvaty y0
2

2
1 += . Rearranging this just a bit, we have 00

2
2
1 =−+ ytvat y . Well, this is a 

quadratic equation with t serving as the unknown. We have a well-known solution for 
this. (If you don’t remember what it is or don’t feel comfortable working with it, you 
must make the effort needed to refamiliarize yourself with it. This is a minimal skill 
which is prerequisite for this course.) Using the “quadratic formula” we can find the 

values of t that make this equation true. This gives us 
a

ayvv
t oyy 22

0 +±−
= . Now, be 

careful: The generic form of the quadratic formula has a quantity in it called “a”. The 
specific equation that we have also has a quantity in it called “a” and in almost the same 
role. Do not confuse them! They differ by a factor of ½ which can really screw things up. 

Now it’s just a matter of plugging things in. For  we use SOHCAHTOA to find yv0

second
meters9.31)53sin(

second
meters40)sin(00 =°×== θvv y . For the acceleration, we use g, 

being careful to use a negative sign for it since it acts in the downward direction 
always. Thus we have 

t or x 

y 



2

2

2

2
0

second
meters8.9

meters10
second
meters8.92

second
meters9.31

second
meters9.31

2

−

××−⎟
⎠
⎞

⎜
⎝
⎛±−

=

+±−
=

a

ayvv
t oyy

 

Note that we used  since we’re trying to find the time at which the ball 
will be at a height of 10 meters. Grind through all the numbers on this and you’ll get 

. This gives us not one but two answers. How do we pick 
which one to use? In fact, we’ll just pick both: Notice that part (d) of this problem 
asks for the time at which the ball will pass through a height of 10 meters while 
traveling downward. Well, our equation doesn’t specify upward or downward, it just 
gives us the times at which the ball has a height of 10 meters. Since the ball has that 
height two times on this trip, the first while headed up and the other while headed 
back down, the equation gave us two times. (Think about that for a moment: What a 
remarkable tool this relation is!) The earlier (smaller) value will be the one at which 
it’s going up and the later (larger) value will be the one at which it’s coming down. 
These are 0.34 seconds and 6.18 seconds, respectively. 

meters10=y

seconds92.2seconds26.3 ±

As a final step, just look at the numbers and see if they make sense. The ball starts out 

going up at 
second
meters40 . If it didn’t accelerate (remember: in the early stages it’s 

“decelerating,” but we don’t use that word), it would take it ¼ second to travel 10 
meters. We have a result that’s somewhat larger than ¼ second, indicating that it’s 
slowing down, but not a heck of a lot. After all, it will only slow down by 25% in the 
first second and this is less than one second. So our result is reasonable. It’s 
worthwhile to get in the habit of doing this kind of test on your results. 

b. It will reach its maximum height when its upward speed is zero. Using atv =∆ , 
with gravity as the acceleration and vv y ∆=0 , we get seconds25.3=t . 

c. To find its maximum height we just use the procedure we’ve used several times 
so far. The only difference is that we must use  instead of the full speed. Using 

this, we have  which gives a total height of 51.9 meters. An alternative 

method would be to use 

yv0

gyv y 22
0 =

tvaty y0
2

2
1 +=  with 3.25 seconds substituted for t. 

d. We did this as part of (b). The ball will pass through a height of 10 meters 6.18 
seconds after being thrown. 

e. To find how long it will be until the ball hits the ground, we could just use 
tvaty y0

2
2
1 +=  again—this time picking 0=y . This would allow us to cancel a 

factor of t and we would have (after subtracting and dividing appropriately) 
a
v

t y02
= . 

However, we have a powerful tool at our disposal in this problem: Symmetry. The 



ball’s path coming down will be a precise mirror image of its path on the way up. It 
will take just as long to come down as it did to reach the apex of its trajectory. Thus 
we can just double the result we found in part b. and state that it will hit the ground 
6.5 seconds after being thrown. 

f. To find the distance from the thrower the ball will have traveled before hitting the 
ground, we use the same strategy as we did in the airplane/bomb problem. We’ve 
already done most of the work: We know how long it took to hit the ground after 
being thrown. All we need to do is find the x component of its velocity (which will 

not change in this problem). This is ( )
second
meters1.2453cos

second
meters400 =°×=xv . Now, 

we just multiply this by the time found in e. This gives 

meters156.5seconds6.5
second
meters1.240 =×== tvx x . 

g. Finally, to find the ball’s final velocity, we have several options. Soon, we will 
learn about conservation of energy, which will give us another option. But for now, 
one option is just to invoke symmetry again. We know that the ball’s velocity will 
have the same magnitude as when it was thrown. It’s direction will be a mirror image. 
So the final velocity will be ( °−°=° 53180127 ). Another way to find the solution is 
to realize, again using symmetry, that the y component of the velocity will be the 
negative of what it was when the ball was thrown (i.e., the ball is coming down just as 
fast as it went up) but the x component of the velocity is unchanged. This gives 

yxv f ˆ
second
meters9.31ˆ

second
meters1.24 −=v . A third way is to do it systematically, although 

this does repeat steps. In general, the velocity of the ball at any instant between being 
thrown and hitting the ground will be tavv vvv += 0 . Substituting the appropriate values 
for 0vv  and av , we can get the velocity at any instant while it is traveling. This is, by 
far, the cleanest and most powerful of the methods since it doesn’t rely on any special 
knowledge about any special point, but it may be a bit cumbersome. 

The one thing which is wrong, WRONG, WRONG is to leave out the vector nature 
of the solution! The question asked for a velocity, which is a vector. Providing a 
scalar (i.e., the speed) answer to a question asking for a vector is simply wrong and 
will earn a grade of zero (as many of you will learn on the first exam). 
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