
PHYSICS 206a 
HOMEWORK #3 

SOLUTIONS 
 

1. Two runners, A and B depart from the same starting point. Runner A goes 

directly North with a speed, relative to the ground, of 
second
meters5  while 

runner B goes directly west with a speed, also relative to the ground, of 

second
meters7 . 

a. What is the speed of runner A as seen by runner B? 
b. What is the velocity of runner A as seen by runner B? 
c. What is the velocity of runner B as seen by runner A? 

For part a., we realize that the speed of runner A as seen by runner B is 
absolutely identical to the speed of runner B as seen by runner A. A better way of 
stating this would be “the speed with which the two are moving apart.” To find 
out what this is, let’s use a drawing: 

Now, let’s use a little common sense: One runner is moving (relative to the 

ground) at 
second
meters5  while the other is moving at 

second
meters7 . The fastest they can 

be moving apart must be 
second
meters12  while the slowest they can be moving apart 
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must be 
second
meters2 . Go no further with this solution until you understand that! I’ll 

wait here.... 

O.K., from the above, we realize that the answer we’re going to get must be 
somewhere between the maximum and minimum as found above. (I strongly 
recommend that you get into the habit of going through this sort of exercise 
automatically. Never try to solve a problem until you have some sense of where 
you’re going. If your final answer disagrees with your estimate, you made a 
mistake somewhere—if it was in your estimation method, view it as an 
opportunity to rethink your intuition.) From the picture we’ve made, we see that 
the speed with which they’re moving apart is just the hypotenuse of a right 

triangle. This has the length 
second
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is the speed with which they are moving apart. Note that it is consistent with our 
estimate for the range of possible answers. This is a scalar quantity. To get the 
vector result, we’ll have to do a bit more work. 

We are given the velocities of the two runners relative to the ground. We 
must recognize, however, that the ground is not the only possible choice of frame 
of reference. It is a relatively common choice, but any non-accelerating frame is 
equally valid. Each runner might well be inclined to select himself as a perfectly 
dandy frame of reference and their would be nothing wrong with this choice (as 
long as he wasn’t accelerating). We know how to deal with choices of reference 
frame that are different from the one in which we have knowledge: A coordinate 
in reference frame #1 is the coordinate in reference frame #2 plus the coordinate 
of reference frame #2, itself, in reference frame #1. 

This leads, ultimately, to the “Galilean velocity transformation”: The 
velocity of an object in frame #1 is the velocity of the object in frame #2 plus the 
velocity of frame #2 in frame #1. Let’s see how this helps us in this case. 

We begin by picking a reference frame that is “attached to” runner B. This 
will be reference frame #1, as described above. Now, we know the velocity of 
runner A relative to the ground, so the ground forms reference frame #2. All that’s 
left is to find the velocity of reference frame #2 as seen from reference frame #1. 
Well, since we are given the velocity of runner B relative to the ground, the 
velocity of the ground relative to runner B is just the negative of this. We’ll write 
this as gBvv  for “velocity of ground relative to B.” I’m going to go one more step: 
I’m going to define the unit vectors  and  to correspond with the directions 
“East” and “North,” respectively. (For clarity, I might have chosen to call these 

x̂ ŷ
Ê  

and  instead. But I decided to go with what you’ve seen before. It really 
doesn’t matter.) 

N̂

Using this, we have xvgB ˆ
second
meters7=v . Notice that this is a positive quantity 

because the runner is running in the x̂−  direction. Be careful! The velocity of 



runner A in the ground’s reference frame was given in the problem as 

yvA ˆ
second
meters5=v . So, following the prescription laid out above, the velocity of 

runner A as seen by runner B is x
second
metersy

second
metersvA ˆ7ˆ5 +=v . 

To find the velocity of runner B as seen by runner A, we follow the same 
procedure. However, from the frame of A, the velocity of the ground is 

yvgA ˆ
second
meters5−=v . We have x

second
metersy

second
metersvB ˆ7ˆ5 −−=v . 

The signs in both  and Bvv Avv  are very important! 

 

 
2. A vector has a length of 7.2 and is oriented 51° relative to the x axis 

of a Cartesian coordinate system. (Positive angles correspond to 
counterclockwise rotation.) Express this vector in terms of the unit 
vectors parallel to the x and y axes. 
This activity is called “vector decomposition” because we decompose the vector 

into its two components. Please remember both why we can do this and why we want 
to do this: We can do this because the “real” vector can be thought of as the resultant 
of an appropriate set of component vectors. In general, there are an infinite number of 
combinations of component vectors that could add up to give any particular vector. 
Once we’ve picked a set of coordinate axes, however, life gets very much easier if we 
choose a set of component vectors that are parallel to the coordinate axes. By doing 
this, we ensure that the component vectors are perpendicular to each other. This, in 
turn, ensures that they are independent of each other. This last gives the true power of 
the decomposition: Vectors which are perpendicular to each other are independent of 
each other! Keep repeating that to yourself until it’s burned into your memory. 

Once we’ve decomposed a vector into its perpendicular components, we can treat 
each component as its own problem. If our full problem exists in three dimensions, 
for example, by decomposing it into perpendicular components we have recast it as 
three separate problems. One hard problem has been broken into three easy (or, at 
least, easier) problems. This can make something that was intractable into something 
quite straightforward. After we’re done with the three solutions, we just add them 
back together. 



So, in this case, we have the following situation: 

In this case, the magnitude (the “size” or “length” of the vector) of R
v

 is 7.2 (note 
that, in this case, the vector has no units; this will not be the case typically—be 
careful). The angle is °= 51θ . We find the magnitudes of the components by using 

SOHCAHTOA. The x component is found from 
R
Rx=)cos(θ  (recall that when we 

write the vector without its little arrow we mean the magnitude of that vector), which 
gives 53.4)51cos(2.7)cos( =°×== θRRx . Likewise, the y component is found from 

R
Ry=)sin(θ , which gives 6.5)51sin(2.7)sin( =°×== θRRy . 

We’re not done yet. We’ve now found the magnitudes of the components. In 
order to express the original vector, we must multiply these components by “unit 
vectors” in the directions of the two axes. Recall that unit vectors are vectors which 
carry only direction. They must be multiplied by a scalar to be used. Thus, we have 

. At this point, we are done! Resist the urge to go 
another step. This is it. We’re finished. No more. STOP! 

yxyRxRR yx ˆ6.5ˆ53.4ˆˆ +=+=
v
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3. Three vectors are added together. The first has a length of 2.9 and is 
oriented at 22°. The second vector has a length of 5.1 and is oriented 
at –37°. The third vector has a length of 3.5 and is oriented at 113°. 
Find the resultant algebraically. After finding the resultant 
algebraically, express it in terms of a size and direction. Note: All 
angles are relative to the x axis. 
I’ll do this one with a minimum of explanation until the end. We perform the 

procedure we used in the previous problem, except we do it three times, to find the 



components of the three vectors given. Let’s call these three vectors A
v

, B
v

, and C
v

. 
Expressed in component form, these are: 

yxyxC
yxyxB

yxyxA

ˆ22.3ˆ37.1ˆ)113sin(5.3ˆ)113cos(5.3
ˆ07.3ˆ07.4ˆ)37sin(1.5ˆ)37cos(1.5

ˆ09.1ˆ69.2ˆ)22sin(9.2ˆ)22cos(9.2

+−=°+°=
−=°−+°−=

+=°+°=
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One quick statement is in order here: Please do not just memorize the relations for 
the components in terms of sines and cosines as shown above! Always draw a picture 
before applying SOHCAHTOA. Once you get good at it, you’ll be able to make the 
picture in your head. But angles won’t always be specified in the same way, so be 
careful and make sure you do things systematically, not from rote. 

Now, we have our components of the three vectors. To find the resultant of the 
addition of these three, all we need to do is add the x components together and add the 
y components together. This gives 

( ) ( )
yx

yxD
ˆ24.1ˆ39.5

ˆ22.307.309.1ˆ37.107.469.2
+=

+−+−+=
v

 

Now, I won’t bother making another drawing since the one I used in Problem #2 
will do just dandy for us here. Take a look at that picture. Now, note that one can’t 
tell by simply looking at the picture whether the original vector was given as a size 
and direction and then decomposed into components or if the components were given 
and used to create a size and direction. The geometry is the same. We can find the 
size using the theorem of Pythagoras: 53.559.3024.139.5 22 ==+=D . To find 
the direction, we use the “tangent” function inverted. (Since we now know the size, 
we certainly also have the option of using the inverse of either the sine or cosine 
functions. Give these a shot on your own and confirm that you get the same answer.) 

Since 
adjacent
opposite

=tan , we have 
x

y

D
D

=)tan(θ . We want the inverse of this, so we 

write °=⎟
⎠
⎞
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θ . This is relative to the x axis. 

4. An airplane is traveling at a constant velocity of 
second
meters203  relative to 

the ground, oriented 17 degrees north of east. A skydiver jumps out 
of the airplane and (after opening his parachute) falls at a constant 

velocity of 
second
meters7.3  straight down. What is the velocity of the 

airplane as seen by the skydiver? (You can treat “north” as being the 
 direction and “east” as being the  direction in both this and the 

next question, if you’d like. This would make the up/down direction 
.) 

ŷ x̂

ẑ±

I threw this one in since we’ve gotten a little bit stuck in two dimensions. I 
wanted to make sure that you remembered that there is a third dimension out there. A 



“top-view” drawing of the velocity vector of the airplane would look just like the 
drawing I did in Problem #2. 

Let’s break this into its components, as we’ve done in the previous two problems. 
This is (I’ll skip the gory details—come see me if you get a different result and can’t 

figure out why), yxvairplane ˆ
second
meters4.59ˆ

second
meters1.194 +=v . 

Now, here’s where things will go awry for many of you: As drawn, we are 
looking straight down at the airplane’s velocity vector. One mistake that I just know a 
huge fraction of you will make is that you will want to put the skydiver’s velocity 
vector in the  direction! This is wrong. If we are looking straight down on the 
airplane, the skydiver’s velocity will be into the page—along the direction we are 
looking. I can’t draw that, so I’ll suggest holding a pencil right at the base of the 
airplane’s velocity vector so that it is pointed straight into the page. Pretend that the 
pencil is the skydiver’s velocity vector. In the frame of reference of the Earth (note 
that the airplane’s velocity vector was specified in that frame), this will be given by 

ŷ

zvskydiver ˆ
second
meters7.3−=v . (It’s not the worst mistake in the world if you didn’t use a 

negative sign on this. As long as you’re consistent, it doesn’t matter at this stage. 
Later in the course, it will be very important to make “down” the ẑ−  direction.) 

Once you’ve gotten to this point, it’s easy. We just do the same thing we did in 
the previous assignment: A vector in frame of reference B is that vector expressed in 
frame of reference A plus the vector connecting the two frames. (This is called 
“Galilean relativity.”) We want the velocity of the airplane as seen by the skydiver—
that is, the velocity of the airplane in the skydiver’s frame of reference. We know the 
velocity of the airplane in the frame of the earth. The earth’s velocity in the frame of 

reference of the skydiver is zvearth ˆ
second
meters7.3=v . (Note the change in sign: From the 

skydiver’s perspective, the earth is coming up toward him—eek! Thus the sign is 
positive for “up.” Again, it doesn’t matter if you did this backwards as long as you’re 
consistent. In this case, “consistent” means having opposites signs for the earth’s and 

yairplanev :
v
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θ 

xairplanev :
v

y 
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the skydiver’s velocities, respectively.) Thus the velocity of the airplane as seen by 

the skydiver is zyxv skydiverplane ˆ
second
meters7.3ˆ

second
meters4.59ˆ

second
meters1.194/ ++=v . It’s still 

going to the Northeast, but it’s also going up. 

5. A car travels at 
second
meters26  oriented 30 degrees north of east. It travels 

for 3 kilometers. It then turns so that it is oriented to the south. It 

travels at 
second
meters30  for 27 minutes. What is its velocity at the end of 

that time (assuming it keeps on going)? (You can treat “north” as 
being the  direction and “east” as being the  direction, if you’d 
like.) 

ŷ x̂

Okay, I admit it: This was something of a trick question. As a policy, I 
detest trick question. But there’s a very, very common error made by students 
new to vector concepts that needs to be addressed as quickly as possible. One of 
the quickest ways to bring someone’s attention to a problem is with a bit of pain! 
So here it is. 

The problem begins by stating the velocity of the car and the distance that it 
travels with that velocity. You are then told that its velocity changes. Further, you 
are told how long it travels at the new velocity. What you must learn is that the 
distance traveled affects the displacement (or “position”) vector, not the velocity 
vector. Likewise, the time traveled affects the distance traveled (and, hence, the 
position vector) and not the velocity vector. The velocity at the end of the trip is 

second
meters30  in the  direction. ŷ−

Many people have trouble distinguishing between a quantity and the change 
in that quantity. Stated like that, it seems simple. But the fact remains that many 
(most?) of you will have trouble with this. When a quantity changes, that change 
can take a variety of forms. If the quantity is a vector, the change can be in the 
size of the vector, its direction, or both! The change in a vector has nothing to do 
with the vector itself. Of course, a vector describing some attribute of a Physical 
system, e.g., the position or velocity, depends on the history of changes that it 
experienced. But the connection between the position of something and the 
velocities that it had in the past is not a direct one. More importantly, the history 
of the velocities that an object had has absolutely nothing to do with the velocity 
that it has at a given moment. Be careful! 

I promise not to ask any more trick questions this semester. (On the other 
hand, I will often ask you tricky questions—that one letter makes a big 
difference!) 



6. Two cars are traveling in the  direction. At some instant in time 
(let’s call it t=0), one is 123 meters behind the other. The one in front 

is traveling at 

ŷ

second
meters23  while the one in the rear is traveling at 

second
meters26 . At what time (relative to t=0) will the one in the rear catch 

the one that was initially in front? 
Since this is a one-dimensional problem, we can ignore the vector features. 

That makes life a smidge easier. There are two ways to do this problem, one is 
very easy but requires a fairly sophisticated way of looking at things. The other 
way is very straightforward but a bit more tedious. I’ll do it the tedious way first 
and then the elegant way. 

One of the key skills that is necessary for doing Physics is to be able to 
translate a description of a situation into mathematical relationships. One useful 
tool in this process is to recognize important words of phrases. In this case, the 
most important word is “catch.” Mathematically, when one car catches the other, 
we will have the relation 21 xx = , where  is the location of one of the cars and 

 is the location of the other car. To find the time at which , we must 
find expressions for the locations of each car as a function of time and then set 
those equal to each other. The time at which the two expressions are equal is the 
time at which one will catch the other. 

1x

2x 21 xx =

Let’s start with the one in front and let’s call its location  at 01 =x 0=t . 
Now, here’s a real trap that many people fall into: Remember that you have 
complete freedom to choose the origin of your coordinate system but that you can 
only do this once. Once we’ve decided that the origin of the coordinate system is 
the original location of the car in the front, we must describe all locations based 
on this decision. We cannot also say 02 =x  at 0=t , assuming a second 
coordinate system for the second car! That way lies disaster. 

The location of the first car can now easily be stated: Since we know its 
speed and we know that this speed stays constant, we can say that the distance 
from the origin increases by each second. Written mathematically, this 

is 

meters23

ttvx ×==
second
meters2311 . 

Now we do the same thing for the second car. Since it starts out 123 meters 
behind the first car at 0=t  and then travels at a different speed, we write 

ttvxx ×+−=+=
second
meters26meters123)0( 222 . 

Setting the two equations equal to each other, we have 

seconds41

second
meters26

second
meters23

meters123)0()0(
21

2
221 =

−

−
=

−
=⇒+=

vv
xttvxtv . 



Now for the elegant way: We place the origin of our coordinate system 
inside the car in front. Remember that you can do this! This is very crucial: The 
thing which allows us to place the origin of our coordinate system anyplace we’d 
like implies that there’s no such thing as absolute motion, only relative motion. 
Sure, it frequently makes sense to think of the Earth as fixed and motionless. That 
is convenient because everyone on Earth can then agree on the locations and 
motions of objects described relative to the surface of the Earth. But there is 
nothing requiring us to do this! We can just as easily decide that a car is 
motionless and that everything around it is moving. (One caveat here: We can do 
this for moving things, but if we do it for accelerating things, it gets very 
cumbersome and messy. It still can be done, but usually it’s much easier to pick 
something that’s not accelerating, even though it can still be moving. We’ll talk 
about this next week.) So we place the origin of the coordinate system inside the 
car in front. Now, the equation describing its location is trivial:  at all 
times. 

01 =x

The location of the second car is easily written down as well. 
. Notice that there’s only one speed in this system—the relative 

speed of the car in the rear in the coordinate system fixed to the car in the front, so 
no subscript is necessary. So what is ? It’s just 

vtxx += )0(22

v

second
meters3

second
meters23

second
meters26 =− . 

Now we can write vtxvtx −=⇒=+ )0(0)0( 22 . 

So 

second41

second
meters3

meters123
second
meters3meters123 ==⇒×= tt . 

(By the way, the symbol “ ” is read “implies” and is a strong statement of 
a logical relationship.) 

⇒

Our two answers agree, as they must. The “brute force” solution is more 
reliable than the “elegant” solution. However, it takes more effort and time and, 
more importantly, implies a less-thorough understanding of the problem. 



7. Two men are playing catch in a train (hey, they’re bored). They throw 

a ball back and forth with a speed of 
second
meters5  along the length of the 

train. From the perspective of an observer watching from the side of 

the tracks, the train has a velocity of 
∧∧

+ yx
second
meters18

second
meters18 . From the 

perspective of the observer outside of the train, what is the velocity 
of the ball when it’s going toward the front of the train? What is the 
velocity of the ball when it’s going toward the back of the train? What 
is the speed of the ball? 

We once again have the situation in which we have a change of frames of 
reference. It would make sense to pick one of the axes for the train’s frame as 
being parallel to the train, but this would make it not parallel to the coordinate 
system in which the problem was stated. There is a simple technique for dealing 
with going from one frame to another in which the axes are not parallel to those in 
the first frame, but that’s a bit beyond us here. So we’ll have to use the technique 
we’ve been using, but we’ll have to be a little careful. 

The train has a constant velocity, trainvv , which we are given. We are told that 
the ball travels along the length of the train, so we know that the components of 
the ball’s velocity will have the same ratio as those of the train. That last sentence 
is a very powerful statement, so take a moment and make sure you understand 
what it said: For an observer who is not on the train, the train is traveling at an 
angle θ. Some of you noticed that this happens to be 45°, but that’s not terribly 
important. What matters is that the angle implies that the  and  components of 
the velocity of the train have a ratio that is unique to that angle. (In the language 
of Trigonometry, that ratio is called the “tangent” of the angle.) Anything 

x̂ ŷ

trainvv

forwardballvv

backwardballvv

θ 

vy 

vx



traveling at that angle will have the same ratio of its  and  velocity 
components. This is the heart of Trigonometry. 

x̂ ŷ

Knowing the components of the train’s velocity tells us the angle at which it 
is traveling. In this case, we can readily find that this is 45° (see problem #2 for 
the technique to find this; I won’t always be so nice as to give you a simple 
angle). As discussed above, the train is motionless in its own frame of reference, 
but its axis makes an angle of 45° with respect to the coordinate system that is 
fixed to it. Thus the ball’s velocity when it is moving toward the front of the train 
is 

yx

yxv forwardball

ˆ
second
meters54.3ˆ

second
meters54.3

ˆ)45sin(
second
meters5ˆ)45cos(

second
meters5
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°+°=v

 

and when it is moving toward the back of the train, it is 

yx

yxv backwardball

ˆ
second
meters54.3ˆ

second
meters54.3

ˆ)45sin(
second
meters5ˆ)45cos(

second
meters5

−−=

°−°−=v

 

Again, these are the velocities of the ball in the frame of the train. But we 
want the velocities in the frame of the observer. You’re now experts in this, so it’s 
trivial at this point. The hard part was finding the velocity in the train’s frame. 
The velocity in the observer’s frame is just the velocity in the train’s frame plus 

the velocity of the train in the observer’s frame. This is 
∧∧

+ yx
second
meters18

second
meters18 , 

so we have  

yx

yxv earthforwardball

ˆ
second
meters54.21ˆ

second
meters54.21

ˆ
second
meters18

second
meters54.3ˆ

second
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and 

yx

yxv earthbackwardball

ˆ
second
meters46.14ˆ

second
meters46.14

ˆ
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8. An object is traveling x̂
second
meters5 . It undergoes an acceleration of 

x̂
second
meters2.1 2− . What is its velocity after 3 seconds? What is its 

velocity after 5 seconds? 
This is an easy one, but with some real depth at the bottom. Recall that 

acceleration is the rate of change of velocity. In this case, we’re working in one 
dimension, so we can ignore the vector aspect of both acceleration and velocity. 
(Don’t get too comfortable with this situation: We will very shortly start working 
with accelerations that affect both components of the velocity. Indeed, we will 
very soon see accelerations which only affect the direction of the velocity without 
affecting its size at all.) 

Since the acceleration has an opposite sign to that of the velocity, the 
acceleration is in an opposite direction to the velocity. At the beginning of the 
process, this means that the object will slow down. Sooner or later, if the 
acceleration persists, the object will stop. It will then reverse direction and start 
speeding up. A very crucial point here and one which you absolutely MUST 
understand is that the acceleration can remain constant, even as the velocity 
becomes zero and then starts growing again. This is particularly difficult for many 
people to grasp when considering the instant at which the speed is zero. Just as in 
the problem #5 in this assignment, the change in a quantity is distinct from the 
quantity itself. The fact that the velocity is zero does not mean that the 
acceleration is zero. Nor does the fact that the acceleration is negative mean that 
the object is (necessarily) slowing down. In this case, we see that the velocity gets 
smaller and smaller, eventually becoming zero and then changes direction and 
starts getting bigger and bigger. All without the acceleration ever changing size or 
sign. 

When the acceleration is constant, we can safely use the definition of the 

average acceleration to solve problems. Recall that this is 
t
va

∆
∆

=
v

v  —in words 

“the acceleration is the change in velocity over the time in which the change 
occurs.” So, to find the total change in the velocity, we simply multiply tav ∆=∆ vv . 
So the change in the velocity after three seconds is 

second
meters6.3seconds3

second
meters2.1 2 −=×−=∆v . Once again, this is the change in 

the velocity (note that I left the arrows off since we’re only in one dimension, so I 
could say “speed” with accuracy here). To find the velocity after this time, we add 

this number to the original velocity 
second
meters4.1

second
meters6.3

second
meters5 =−=v . 

Repeating the above procedure with a time of 5 seconds, we get 

second
meters6seconds5

second
meters2.1 2 −=×−=∆v . And, adding this to the original 



velocity, we have 
second
meter1

second
meters6

second
meters5 −=−=v . This would be in a 

direction opposite to that of the original velocity. 

9. An airplane lands with a speed of 
second
meters53 . It accelerates to a stop 

at a constant rate. (Remember: We don’t use the word “decelerate” 

in this class.) If its acceleration is 2second
meters2.1− , how far does it travel 

before coming to a stop? 
Once again, there are at least two different ways of doing this. As before, I’ll 

do it the hard-but-straightforward way first. Then, I’ll show you the elegant way. 

We begin by using the techniques discussed in the previous problem to 
figure out how long it will take for the plane to stop—i.e., to reach a speed of 
zero. (Once again, we have a one-dimensional problem, so we don’t need to use 

vectors.) Since the acceleration is constant, we can write 
t
va

∆
∆

=  so 
a
vt ∆

=∆ . 

Now, what is the change in the speed? Since we’re going from some speed to 

zero, the change is the whole thing, 
second
meters53− . Note the use of the minus sign! 

This is a common source of error. Since the speed gets smaller, the change is 

negative. Plugging this in, we have seconds17.44

second
meters1.2-

second
meters53

2

=
−

=
∆

=∆
a
vt . 

From here, it’s just “plug and chug”—provided you know what to plug into! In 
class, we derived an expression for the final position of an object which is 
accelerating at a constant rate—even if it has some initial speed and/or position. 
The formula (which you are expected to commit to memory!) is 

2
2
1

00 attvxx ++= . In our case, the initial position is zero (we declare that it is 
zero, since we have the ability to set our origin anywhere we want, why not put it 

somewhere convenient?). The initial speed is 
second
meters53 . So, we have 

( )2
22

12
2
1

0 second17.44
second
meters2.1second17.44

second
meters53 ×⎟

⎠
⎞

⎜
⎝
⎛−+×=+= attvx . 

Be very careful to use the right signs in this—the velocity is positive and the 
acceleration is negative! Sticking numbers in, we get meters1170=x . 

Now, for the elegant method. The technique is very powerful, but your brain 
had better be ready for it: Run the clock backwards! Imagine the plane starting 

from a stop but moving backwards to accelerate up to the 
second
meters53 . The time is 

the same. We use a different origin for our coordinate system in this case, 



choosing it at the place where the plane “starts” (i.e., where its speed is zero). 
Also, our initial speed is now zero, so we can simply write 

( ) meters1170second17.44
second
meters2.1 2

22
12

2
1 −=×⎟

⎠
⎞

⎜
⎝
⎛−== atx . Be careful to drop 

the minus sign, however: We’ve just calculated the distance traveled while 
accelerating backwards. But that’s not what we were asked for. 

So why did this work? Coincidence? Magic? Nope, actually we set it up to 
work and if we’d been smarter it would have been obvious (this is frequently the 
case with mathematics). Let’s look at our original position formula 2

2
1

0 attvx += . 
We assumed that . Again, why the minus sign? Because we were slowing 
down! Sticking this into the position formula gives 

atv =−

2
2
12

2
122

2
12

2
1

0 )( atatatattatattvx −=+−=+−=+= . This actually proves the 
conjecture I used above: That the system running in reverse retraces its steps. The 
distance traveled in the process of accelerating to a certain speed is half the 
distance the object would have traveled had it moved at that final speed for the 
entire length of time, without accelerating. Recall that this was one key step in our 
derivation of the formula in the first place. So we’ve just come full-circle. 

Try wrapping your head around this technique. It can really save a lot of 
work, but it can be a trap if you don’t keep your wits about you! 

10. An oil tanker is traveling at 
second
meters11  when it notices an 

iceberg 2.8 kilometers in front of it. Its maximum acceleration is 

2second
meters02.  (whether forward or backward). Will it strike the iceberg? 

If so, how fast will it be going when it strikes? If not, how far from the 
‘berg will it be when it stops? 

A lot of people have a lot of trouble with this problem. The source of the 
problem, in many cases, and the solution to it are one in the same. The most 
powerful problem solving strategy, in general, is, in this case, absolutely essential: 
The problem must be broken up into pieces. It cannot be solved in a single step, 
but must be solved one step at a time. Let’s begin with the first question: Will the 
ship strike the iceberg? 

As with other questions, this one is clarified by restating it in mathematical 
language. What we’re really asking is “will the ship still have a speed that is 
greater than zero when its location is the same as that of the iceberg?” To answer 
this, we calculate how far the ship would travel, assuming it’s trying as hard as 
possible to stop, if the ‘berg weren’t there. This, once again, uses the equation 

2
2
1

00 attvxx ++= . Again, we also have to start by figuring out how long the 



stopping would take. As before this is 
a
vt ∆

=∆ . Sticking the appropriate numbers 

in, we have seconds550

second
meters.02-

second
meters11

2

=
−

=
∆

=∆
a
vt . 

Again, we take the origin to be at the initial position of the ship. Let’s go 
ahead and use the trick we worked out in the previous problem—we can either 
run the clock backwards and take 2

2
1 atx =  for 550 seconds or take tvx 02

1=  for 
550 seconds. Caution: Never use a formula blindly! If you don’t truly understand 
where either of these comes from, go ahead and use the full form 

2
2
1

00 attvxx ++= . This will always be correct (if the acceleration is constant). 
It’s only a little bit more work. 

I think tvx 02
1=  is easiest, so let’s use that. Plugging in numbers, we have 

meters3025seconds550
second
meters112

1
02

1 =××== tvx . Since the iceberg is 2800 

meters from the ship to begin with, the ship will clearly strike it before coming to 
a stop. 

So now we need to know how fast the ship will be going when it strikes the 
iceberg. This is where most people lose it. You must gain some facility for 
working equations in both directions: Just because a formula is set up to give you, 
say, “x” as a function of “t,” you shouldn’t lose sight of the fact that what it’s 
really doing is giving you an overall relationship between “x” and “t.” You can 
(almost) always flip things around! In this case, we know the distance to the 
iceberg. We need to find the time it will take to get there in order to calculate the 
speed it has when it hits. (There is another method. I’ll show you this at the end.) 
So let’s use our full formula—we can’t use the shortened form in this case since 
that’s only useful when the object comes to a stop! 

We have 2
2
1

00 attvxx ++= . Let’s put our origin at the location where the 
ship starts to slow down. Let’s set meters2800=x  and subtract this distance 
from both sides of the “=” sign. This gives us 0meters28000

2
2
1 =−+ tvat . I hope 

you will recognize this as a quadratic equation where t is the variable to be solved 
for. For this, we us the “quadratic formula.” If your memory of this has dimmed, 
you must review the topic. We will have many occasions to use the formula this 
semester and I expect you to know both what it is and how to use it. (I’ll be happy 
to give you a little review during office hours.) 

Solving for t using the quadratic formula, we have 

a
avv

t
meters280022

00 ×+±−
= . (Note the sign: Since the 2800 meters is 

negative, our “–4ac” term becomes positive.) From here, we just plug in numbers 



to get 
2

22

2

second
meters02.

meters2800
second
meters04.

second
meters121

second
meters11

−

×−±−
=t . Careful!!! 

Note that the acceleration is negative! Keep the signs straight or you’ll really 
botch things. We’re slowing down, so the acceleration has a sign opposite to that 
of the velocity. Stick the numbers into your calculator and you’ll get 

. Now, as is almost always the case with the 
quadratic formula, we have two answers. Frequently, we must pick one and throw 
away the other. This calls for a bit of judgment: Does one answer make sense and 
the other not? In this case, yes. We know from our previous analysis that the ship 
will strike the iceberg if it travels for 550 seconds. So our answer had better be 
less than 550 seconds. We pick the negative root. The ship will strike the iceberg 
in 400 seconds. (What does the other root represent? Think about it. This is the 
time at which it would again be at the location of the iceberg [the equation doesn’t 
know about the horrible sinking of the ship] after coming to a stop naturally and 
turning around.) 

seconds150seconds550 ±=t

Almost done! All that’s left is to find the speed of the ship when it’s been 
slowing down for 400 seconds. From our definition of acceleration, we know that 

, so we can immediately solve for the change in speed tav ∆=∆

second
meters8seconds400

second
meters02. 2 −=×−=∆=∆ tav . Since the ship’s initial speed 

is 
second
meters11 , its final speed, when it strikes the iceberg, is 

second
meters3 . 

Now, there’s an easier way to do this. Let’s call the speed of the ship at the 

moment it sees the iceberg . This, of course, is 1V
second
meters11  but let’s just call it  

for generality. Let’s call the speed of the ship when it hits the iceberg . Now, 
still taking the original location of the ship to be at the origin ( ), we use our 
formula for the location of an accelerating object 

1V

2V
00 =x

tVatd 1
2

2
1 += . But, since the 

acceleration is constant, we know that the change in speed is the acceleration 
times the time—that’s the definition of the change in speed, after all. So 

. We solve this for the time atVV =− 12 a
VVt 12 −

= . Now, for convenience, we 

rewrite our location expression by noting that there’s a common factor of t that 
can be factored out. [ ]tVattVatd 12

1
1

2
2
1 +=+= . Since we’ve come up with an 

expression for t that uses the speeds and acceleration, we substitute this 

everywhere there is a t. [ ] ⎟
⎠
⎞

⎜
⎝
⎛ −

⎥
⎦

⎤
⎢
⎣

⎡
+⎟

⎠
⎞

⎜
⎝
⎛ −

=+=
a

VVV
a

VVatVatd 12
1

12
2
1

12
1 . Now, 

cancel the acceleration inside the bracket and combine terms. 
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So, finally, we can write . (This is a useful relation to add to your 
toolbox.) We can use this to find the speed of impact directly. We take 

and do a tiny bit of algebra. This allows us to write 

adVV 22
1

2
2 =−

meters2800=d

meters2800
second
meters02.2

second
meters112 2

2
2

1
2

2 ××−⎟
⎠
⎞

⎜
⎝
⎛=+= adVV . This gives an 

impact speed of 
second
meters3 —the same as using our other method. 

Note that we could have used this method from the beginning to do the 
whole problem in one step—provided that we’d gone through the effort to derive 
the necessary formula first. Using an “equation from heaven” is risky! Unless 
you’ve seen the derivation yourself, you never know what assumptions were at its 
core. Once you understand its innards, you can use it when appropriate. This is a 
good one to add to your toolbox! 



11. A police car passes a car traveling in the exact opposite 

direction. The police car is traveling at 
second
meters32  and the officer 

notices that the oncoming car is traveling at 
second
meters35 . The police car 

begins braking at the exact instant the two cars pass each other. The 

police car accelerates to a stop at a rate of 2second
meters4  and then 

accelerates at the same rate until the police car catches the speeder. 
(All speeds and accelerations in this problem were given relative to 
the ground.) 

a. How long after the two cars initially pass each other will it be 
before the police car catches the speeder? 

b. When the police car catches the speeder, what will its speed 
be, relative to the ground? 

c. When the police car catches the speeder, what will its speed 
be relative to the speeder? 

d. Is the acceleration stated in this problem for the braking 
portion of the motion a realistic value? 

e. Is the acceleration stated in this problem for the “pursuit” 
portion of the motion a realistic value? 

 

Alright, let’s do this one step at a time. The acceleration of the police car is 
a constant. Think about that for a second: I didn’t say that it’s constant until the 
car stops and is then constant again until the speeder is caught. I said that it’s a 
constant, overall. The police car is initially moving in one direction, let’s call it 
the  direction. (Why did I decide to call the initial direction of the police car’s 
velocity negative? Well, it really doesn’t matter, but I know that the final velocity 
will be in the opposite direction and it’s just cleaner, by a smidge, if I have that be 
a positive quantity. As with so many things in this course, it doesn’t matter as 
long as you’re consistent!) It brakes and reverses direction. When braking, its 
acceleration is in the positive  direction. It then speeds up to catch the speeder, 
again accelerating in the positive  direction. So the direction of the acceleration 
is always positive  and we are told that the magnitude of the acceleration is the 
same both when speeding up and slowing down. One approximation we’ll make 
in this is that we will ignore the time the officer spends fiddling with the gear-
shift lever going from forward to reverse. This may or may not be reasonable—
we can check on that at the very end. If the time spent moving the lever, which I’d 
guess is roughly one second, is very small compared to the other times of interest 
in the problem, we can safely ignore it. So the acceleration is a constant vector for 
the entire problem and we can use some math that we’ve previously developed. 

x̂−

x̂
x̂

x̂



Since the acceleration is constant, we can jump right in and use our full 
formula for the position of an accelerating object: 2

2
1

00 attvxx ++= . Here’s 
where you see the power of this equation: We’re basically done at this point 
except for some algebra. All the complex speeding up and slowing down is 
already built into the equation. It’s truly remarkable! But we do need to put the 
right numbers into it. 

Let’s take the initial position to be 00 =x . This will make life easier. We are 

told that the initial velocity is 
second
meters320 −=v  (we can leave the explicit 

direction out since, once again, we’re in a one-dimensional problem) and that 

2second
meters4=a . (Once again, note the signs! Get these wrong and you’re pretty 

well doomed.) We’re left with only two other symbols in the equation: Time and 
final position. We’re trying to find the time, so we’ll need to know the final 
position. Well, here we have the exact same situation as in problem #5 and we’ll 
use the exacts same method: Since the police car is catching the speeder, we’ll 
take the time at which the two are at the same position to be the time at which the 
speeder is caught. Thus we have tvx speeder= . We substitute this into the equation 

along with the condition that 00 =x  and we get ( ) 2
2
1

0 attvvspeeder =− . Oh, boy! 
We don’t have to use the quadratic formula! Why not? well, there’s a factor of t 
on both sides, which we can cancel. This gives 

( )
seconds5.33

second
meters4

second
meters32

second
meters3522

2

0 =
⎟
⎠
⎞

⎜
⎝
⎛ +

=
−

=
a

vv
t speeder . (Be sure to 

confirm that the units work out!) (Note that our decision to ignore the time needed 
to move the shift lever adds about a 3% error to our time calculation. Not a big 
deal, in this case, but maybe important in some other application.) 

To find the speed at the time we just calculated we, again, use the fact that 
the acceleration is constant and use atv =∆ . This gives 

second
meters134seconds5.33

second
meters4 20 =×==− atvv final . Be careful at this stage: 

This is the change in the velocity. We want the final velocity. Here’s another 
place where getting the sign wrong will really hurt. We have 

second
meters102

second
meters32

second
meters134

second
meters134 0 =−=+= vv final . (This is over 228 

mph, so we’ve clearly exceeded the bounds of reason with this one, by the way.) 

Relative to the speeder, this is simply 

second
meters67

second
meters35

second
meters102 =−=−= speederfinalrelative vvv . 



Now, is the acceleration while slowing down and speeding up realistic? 

Well, let’s put it into units for which you have some intuitive sense. 2second
meters4  

corresponds to a change in speed of 9 mph (“miles per hour”) per second. This 
would be “zero to sixty” in a little under seven seconds. I think this is reasonable 
for the speed-up phase of the travel. Of course a real car would not be able to 
maintain that acceleration for more than a few seconds. After a while, a realistic 
car would simply not be able to accelerate at the same rate any longer—certainly 
long before getting to 228 mph! 

Automobile braking accelerations tend to be somewhat higher than 
speeding-up accelerations, so this number is on the small side for that, but not by 
as much as you might think. I did a quick calculation with some realistic numbers 
(we’ll do this later in the semester, after we’ve studied friction) and found a 
reasonable braking acceleration rate of about 12 mph per second. Only about 30% 
off from what we used. 


