
PHYSICS 206a 
HOMEWORK #14 

SOLUTIONS 
 
As of the last class of the semester, you are able to do problems #3-14. 
Although we briefly touched on problem #15 in class, we did not spend 
enough time on it for you to understand it fully. Likewise, although you can 
do problems #11-13, I do not consider them “fair game” for the Final Exam 
and will not test you on them this semester. This leaves problems #3-10 
and 14 which you should understand for the Finale. (I will leave off 
solutions to problems #1, 2, and 15 so we can do them next semester.) 
 
 

1. Deferred to next semester. 

2. Deferred to next semester. 

 
3. By hand (i.e., don’t use Excel or some other graphing program), 

sketch the following functions. Take the frequency to be s
1πω =  (that 

can be read “pi radians per second” or “180 degrees per second”). 
Make sure your plot extends over at least 4 seconds. Use whatever 
scale is convenient for the y axis.: 

a. )sin(5 ty ω×=  

b. )sin(5 2
πω +×= ty  

c. )cos(5 ty ω×=  

d. )cos(5 2
πω −×= ty  

The most common question I have been asked regarding 
this one basically had to do with how to handle the ω 
in the argument of the sine or cosine function. The 
answer is so simple that I think many people just 
overlook it—they outsmart themselves. The procedure to 
use in all of these is this: We know the value of sine 
and cosine as it relates to the entire quantity 
between the parentheses (this is known as the 
“argument” of the function). In order to figure out 
the functional dependence on the time, t, we work 
backwards from this and figure out the values of t 
that will make the argument equal to some quantity for 
which we know the value of the sine or cosine. 



An example will clarify this. Let’s look at (a): 
)sin(5 ty ω×=  where s

1πω = . Now, I know that 1)sin( =θ  when 

2
πθ = . In this case t×= πθ , so 

2
πθ =  when st

2
1

= . Thus 

 when 1=y st
2
1

= . A similar approach can be used for 

other points. 

I recommend starting with the t  intercepts. I.e., 
the locations at which 0=y . These will occur whenever 

the argument is an integer multiple of π. Locate a few 
of these and the rest of the plot follows very easily. 

Of course, we’re not here just to plot things 
mechanically. We want to understand how a real event 
which is described by a particular function behaves. 
To get a deeper understanding of sinusoidal functions, 
I recommend taking a look at the unit for frequency. 

This is typically 
s
1
 or, synonymously, “hertz.” Another 

way of reading this, however, is “per second.” We can 
translate t×= πθ  into English as “theta changes by pi 
radians per second.” Perhaps even more informative 
(but less useful for calculations) would be to rewrite 
this in terms of the circular frequency, . Recall 

that 

f

π
ω
2

=f , so using s
1πω =  we get 

s
f 1

2
1
⋅= . We read 

this in English as “the system goes through one half 
of a complete cycle every second.” (After a while 
working with things like this, seeing pi will make you 
automatically think “one half cycle.”) Using this, we 
can very quickly make the plot: Just draw a set of 
axes with t as the horizontal axis (the “abscissa”) 
and some appropriately-scaled vertical axis for y (the 
“ordinate”). Then draw a sine or cosine function that 
goes through one complete cycle two seconds. (a) has 
the appearance shown below (I know that you were told 
to do this by hand, but if I did that it would make it 
difficult to post the solutions on the web page, so I 
cheated and used Excel): 



 

 

Now, for (b) we have to be a bit careful. Everything 
is the same as for (a) except we start the 
oscillations at a later point. Since π/2 is added to 
the argument, when t=0 (at the beginning), the thing 
that we’re taking the sine of already is equal to π/2. 
This appears: 
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For (c), we switch functions altogether. Instead of 
sine, we use cosine. There’s an interesting result 
here that you should internalize. Here’s the plot: 

 

Comparing this with the plot from above, we see a 
very important fact: )cos()sin( 2 tt ωω π =+ . This is not a 
coincidence! It comes from the definitions of the 
cosine and sine functions. The fact is that, for any 
angle θ, )cos()sin( 2 θθ π =+ . By extension, we can also say 

)cos()sin( 2
πθθ −= . Thus, for (d) we have a plot identical 

to (a): 
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4. Again by hand, plot the following functions as a function of x . Again 

take the frequency to be s
1πω = . Take 1

3
1 −= cmk . Make sure that your 

plot extends over at least 12 cm. 

a. sttkxy 0),sin(5 =−×= ω  

b. sttkxy
2
1),sin(5 =−×= ω  

c. sttkxy 1),sin(5 =−×= ω  

d. sttkxy 5.1),sin(5 =−×= ω  

This is precisely the same as the previous problem 
except that I’ve given you the phase as something that 
depends on time and the functions are to be plotted as 
functions of distance rather than time. Plot these up and 
then discuss them a bit. Also, despite having gotten some 
nice practice doing this sort of thing in the previous 
problem, let’s go ahead and do at least the first couple in 
some detail. 

Let’s begin with (a). We know the overall shape of 
this will be a sine wave. What we don’t know, off the bat, 
is where things like the x  intercepts and the maxima and 
minima of the wave will occur. So let’s just sketch the 
wave without putting numbers in on the x  axis. We have (The 
 axis should exactly touch the graph at its beginning. The y
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gap that you see is an artifact of the plotting program—
very annoying!) 

Now, notice that the plot crosses the x  axis at 
several locations. If we can figure out the values of x  at 
which these happen, we’ll be well on our way to finishing 
the plot. At the outset, we do not know what these x  values 
are. But we know how the sine function varies with its 
argument. Consider the function )sin(uy = . We know that we 
will have  when 0=y 0=u  and when π=u  and when π2=u  and 
so on. Well, what we have called u  is just everything in 
the parentheses of our functions. 

For (a), we can say tkxu ω−= . We are told in the 
problem that  for this case. So we have 0=t kxu = . The first 
place where the function equals zero (i.e., where it 
crosses the x  axis) will be at 0=u . This allows us to 
solve for x  trivially—we can say that 0=x  for the first 
place where the graph crosses the x  axis. 

The next place at which this happens will be when 
π=u . So we can write π=kx . Again a pretty trivial piece of 

algebra allows us to say that 
k

x π
=  for this point. We can 

now substitute in the value given for , k 1

3
1 −= cmk , and solve 

for x  explicitly: cm
cmk

x πππ 3

3
1 1

=
⎟
⎠
⎞

⎜
⎝
⎛

==
−

. It is not incorrect 

to go ahead and write this as (approximately) 
, but it is not necessary to do so. cmcmx 42.914.33 =×=

From here it’s easy, the rest of the places where the 
function will cross the x  axis are Kcmcmcmx πππ 12,9,6=  and 
so on. This allows us to label the x  axis of the graph 
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easily, giving: 

(I extended the plot well beyond 12 cm just for 
giggles.) 

Now, (b) is the same function one half second later. 
We’ll plot this systematically in a moment, but let’s think 
about it first. The equation that we are plotting is that 
of a traveling wave. The overall shape isn’t changing. The 
wave is propagating as time passes, however. So we would 
expect to get the exact same shape only shifted somewhat to 
the right (or left, perhaps). How much will it be shifted? 
Well, the frequency is s

1π . That is, as discussed in problem 
#1, the pattern will shift by ½ cycle (pi is one half a 
cycle—180° for those of you who aspire to become ancient 
Babylonian priests) each second. We are plotting the wave ½ 
second after the previous plot, so we would expect it to be 
shifted by ¼ cycle. Let’s see if this is the case. 

Using the technique of (a), we write tkxu ω−= . We then 
substitute the values we are given for ω  and . This gives t

2
πω −=−= kxtkxu . (Note the similarity of this to part (b) of 

problem #1.) Again, we recognize that the function will 
cross the x  axis whenever u  is an integer multiple of pi. 

So our first crossing will be at 0
2
=−

πkx  which gives 

cm
cmk

x πππ
2
3

3
122 1

=
×

==
−

. We can use the same procedure (setting 

Kπππ 3,2,=u ) for subsequent crossings of the x  axis. 
Alternatively, we can realize that we found, in part (a), 
that the zeros repeat every cmπ3 . The place where the 
function “starts” (it doesn’t really start there, of 
course, but we started our analysis with that point) 
doesn’t affect the distance between crossings, just what 
their overall value will be. Thus we can save a lot of 

algebra and just add Kcmcmcm πππ 9,, 63  to cmπ
2
3

 to get the 

other crossings. This gives Kcmcmcmx πππ
2
21,

2
15,

2
9

=  Plotting 

this, we have 
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As expected, the function is shifted to the right by ¼ 
cycle compared to the plot we produced in (a). 

Continuing this process, we perform the exact same 
operations with the other two values of t  which were given. 
For  we get st 1=
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And taking  we get st 5.1=
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Imagine that these four plots are four frames in a 
movie. Each successive plot shows the wave at a slightly 
later time. Notice how it “moves” to the right as time 
passes. This is what we mean when we say that the wave is 
propagating. 



5. What is the speed of the wave you plotted in problem #4? 

We have a very general equation that relates the speed 
with which any wave propagates to its frequency and 
wavelength. This is vf =λ . We weren’t told either the 
wavelength or the circular frequency, but we were told the 
wavenumber ( ) and the angular frequency (k ω ). A little 
algebra is all that is necessary to turn these into what we 
need. 

Using the definition of the wavenumber, we have 
λ
π2

=k  

so 
k
πλ 2

= . Similarly, we know that fπω 2=  so 
π
ω
2

=f . 

Multiplying these together, we get 
kk

fv ω
π
ωπλ =×==
2

2
. 

Substituting in the numbers provided in the problem, we 

have 
s

cm

cmk
v s π

πω 3

3
1 1

1

===
−

. 

Note that the relation 
k

v ω
=  is true in general and is 

just another way of saying vf =λ . 

6. Briefly (a paragraph or two) distinguish between bulk motion and 
wave motion. Also distinguish between longitudinal waves and 
transverse waves. 

A wave is a disturbance that moves. Since what’s “waving” 
is the amount of disturbance, it does not necessarily involve 
motion of material. “Bulk motion,” on the other hand, involves 
an actual relocation of “stuff” from one place to another. 

A fine example of this is “the wave” as performed by the 
attendees of a baseball game (as observed by a student in this 
class). As one group of people in the arena starts sitting 
down, another group of people nearby them starts to stand up. 
This coordinated behavior continues, column after column, all 
the way around the stadium. When viewed from elsewhere (like 
on the television at home), it is clear that something is 
working it’s way around the stadium. But no person actually 
travels along with the disturbance. The people in the stadium 
just stand up briefly and then sit down again. The thing that 
is traveling is the message “stand up now.” If a cluster of 
standing people actually ran around the stadium, it would be 



bulk motion. (Notice that this would happen at a very 
different speed than the speed of the wave.) 

Bulk motion involves motion of material. Wave motion 
involves only motion of information. 

 

7. A very long guitar string has a linear density of 
meter
grams466.4 . It is 

strung with a tension of 97 Newtons. If it is plucked, with what speed 
will the disturbance travel down the length of the string? 

This is simply application of the formula 
µ

TFv = . We 

are given µ: 
meter
grams466.4=µ . We are also given . From 

here, it’s just “plug and chug”: 

TF

second
meters4.147

meter
kilograms10466.4

Newtons97

meter
grams466.4

Newtons97
3

=
×

===
−µ

TFv . 

8. A string which has a linear density of 
meter
grams7  is suspended from the 

ceiling. A mass of 1 kg is hung from the end of the string. The string 
is 2 meters long. A fly is sitting on the string near where it attaches 
to the ceiling. The fly’s wings beat with a frequency of 197 Hz. What 
is the length of the waves generated in the string by the fly? (Neglect 
the contributions of the weight of the string and the weight of the fly 
to the tension of the string.) 

Since we are neglecting the weights of the fly and 
the string, the tension on the string is just the 
weight of the hanging mass. This is 

Newtons
second
meterskgmgW 8.98.91 2 =×== . Thus, the speed of 

propagation of the wave is 

second
meters4.37

meter
kilograms107

Newtons8.9

meter
grams7

Newtons8.9
3

=
×

===
−µ

TFv . 



The disturbance occurs with a frequency of 197 Hz, 
so to find the wavelength we use the fact (true for 
all waves) that vf =λ . This gives 

meters19.0
Hz197

second
meters4.37

===
f
vλ . 

9. A string with a length of 10.0 m and linear density 
meter
grams25  is 

suspended from the ceiling. An object of mass 0.200 kg is hung from 
the string. What is the speed with which a disturbance in the string 
will propagate near (a)the bottom of the string, (b)midway up the 
string, and (c)near the top of the string? (Do not neglect the 
contribution of the weight of the string to the tension in the string!) 

Here’s an annoying little piece of gear-shifting for 
you! All last semester, when we worked on problems 
involving tension, I repeated to you that the tension in 
a string is the same everywhere. Now, out of nowhere, 
I’ve gone and changed the rules! ☺ 

Any particular point on the string has to exert an 
equal and opposite force to the force acting on it—this 
is Newton’s third law. The force acting on a particular 
point along a string hanging straight down is that of any 
mass hanging from it. The string doesn’t know whether the 
mass is that of, say, a brick hanging 20 meters away or a 
brick hanging 2 cm away. Nor does it know whether the 
weight is that of the brick or that of the string itself. 
Any string above the point in question will exert only an 
upward force on the point (you can’t push on a rope!). So 
the tension will be precisely the total weight below the 
point. In this case, this is the weight of the hanging 
mass plus the weight of the string below the point. 

If we begin measuring height, h, at the bottom of the 
string, he have hmstring µ= . Thus, the weight supported by 
the string a distance h above the bottom will be 

( ) ( )ghmgmmgmhW objectstringobjecttotal µ+=+==)( . This is the same as 
the tension force. Thus we can write the speed of the 

wave at any given point as 
( )

µ
µ

µ
ghmhFhv objectT +

==
)()( . 

(a) At the bottom of the string, the only weight is 
that of the hanging object. ( 0=h ), so 



( )
second
meters85.8

meter
kg025.

second
meters8.9kg2.

meter
grams25

second
meters8.9kg2.)()(

22
=

×
=

×
===

µµ
gmhFhv objectT

 
(b) Midway up the string, we use meters5=h  which gives 

( )

( )
second
meters3.11

meter
kg025.

second
meters8.9kg.125kg2.

meter
kg025.

second
meters8.9

meter
kg025.meters5kg2.

)()(

2

2

=
×+

=

×⎟
⎠
⎞

⎜
⎝
⎛ ×+

=

+
==

µ
µ

µ
ghmhFhv objectT

 

(c) At the top of the string, we use meters10=h  

( )

( )
second
meters3.13

meter
kg025.

second
meters8.9kg.25kg2.

meter
kg025.

second
meters8.9

meter
kg025.meters10kg2.

)()(

2

2

=
×+

=

×⎟
⎠
⎞

⎜
⎝
⎛ ×+

=

+
==

µ
µ

µ
ghmhFhv objectT

 

10. A 64 cm long guitar string has a linear density of 
meter
grams466.4 . 

At what tension must it be strung if it is to have a fundamental 
frequency of 110 Hz? (This is the tone identified by musicians as 
“A”.) 

A guitar string has harmonics where the frequency of 
the string’s vibration forms a standing wave. The 
condition for a standing wave on a string anchored at 
both ends is Ln 2=λ  where n is any positive integer and 
L is the length of the string between the anchors. The 



fundamental has 1=n . Thus, taking the length to be 64 
cm, we have meters28.12 == Lλ . 

Now, we know the wavelength and the frequency (which 
is given), so we can calculate the speed of 
propagation of the wave. This may seem odd, since this 
is a standing wave. How can it propagate? Recall, 
however, that a standing wave is created by a 
propagating wave and all of its reflections. If the 
reflections line up with each other, a stable, 
standing wave will emerge. But each of the reflections 
is propagating. They just add up to make something 
that stands still. 

The propagation speed is related to the wavelength 
and frequency via vf =λ , so we have 

second
meters140.8Hz110meters28.1 =×== vfλ . This, in turn, is 

related to the tension via 
µ

TFv = . We are given the 

linear mass density as 
meter
grams466.4=µ  so we have (after a 

smidge of algebra) 

Newtons5.88
second
meters140.8

meter
kilograms10466.4

2
32 =⎟

⎠
⎞

⎜
⎝
⎛××== −vFT µ . 



11. A man blows across the mouth of a bottle of soda shortly after 
the bottle has been opened, creating a flute-like sound. The space in 
the bottle above the liquid is initially filled with carbon dioxide due to 
the fizz in the soda. He sets the bottle aside and comes back several 
days later and tries blowing again. Now, the CO2 has been replaced 
by air. (Treat the bottle as a pipe. The reality is that the odd shape of 
a bottle changes the resonant frequencies dramatically, as we 
saw/heard in class. Neglect this for this problem.) (By the way, this 
would be tough to do in reality—the man’s breath would really screw 
things up. Neglect that effect in the problem.) 

a. By what factor will the frequency of the “toot” change? 

b. If the height of the gas is 10 cm, what was the frequency of the 
tone with the CO2? 

c. What is the frequency with the air? 

d. What are the wavelengths in the two cases? 

This is just a single-end-closed wind instrument, 
within the approximation of the problem. The liquid in 
the bottle forms the closed end. Thus, the length of 
the resonator is cmL 10= . The resonance condition for 

this kind of pipe is 
n
L4

=λ  where n is any odd integer. 

(Personally, I prefer to write this a different way. I 

prefer to write 
)12(

4
+

=
m

Lλ  where m is any integer, even 

or odd. You are welcome to use either form of this 
relation, just don’t mix them up!) Thus, from the 
resonator condition, we know the wavelength. 

Now, the frequency and the wavelength are related to 
each other via the propagation speed of the wave. This 
relation is vf =λ . As stated before, this is true for 
all waves. (Recall that, at resonance, we have a 
standing wave in the “tube” created by a wave and all 
of its reflections adding up. This is why the speed 
matters.) Thus, the frequency for a given “mode” 

(value of n) is 
L

nv

n
L
vvf

44
=

⎟
⎠
⎞

⎜
⎝
⎛

==
λ

, where n is any odd 

integer. 



Using this, the ratio of frequencies expected with 

two different media filling the bottle is 
2

1

2

1

2

1

4

4
v
v

L
nv

L
nv

f
f

== . 

The wavelength will be the same in both cases since 
this is determined solely by the geometry of the 
resonator (the bottle/tube), as stated above. 

Using some numbers (these can be found in your 
textbook on page 484), the speed of sound (at 0° C) in 

carbon dioxide is 
s
mvCO 259

2
=  and that in air is 

s
mvair 331= . Thus, the ratio of frequencies is 

278.1
259

331

22

===

s
m
s
m

v
v

f
f

CO

air

CO

air . Stated as a factor, we can say 

that the frequency in air 1.278 times the frequency in 
carbon dioxide. 

The wavelengths are fixed by the geometry: The 
possible wavelengths are the same whatever gas fills 

the bottle, 
n
cm

n
L

n
404

==λ  (note that I’ve subscripted 

the lambda to keep it clear that there isn’t just one 
wavelength possible but a whole set). Each of these 
will correspond to its own frequency which will depend 

on the gas, as we saw above. These are 
cm

nvvf
n

n 40
==

λ
. 

So, for carbon dioxide, the possible frequencies are 

Hzn
cm

s
m

n
cm

nv
f CO

n 5.647
40

259

40
2 ×=== . (Note the unit in this: My 

solution came out with a unit of 
s
1
 and I could have 

used this—it wouldn’t have been the least bit 
incorrect. But the hertz, , is conventional. The two Hz



are totally synonymous.) For air, these become 

Hzn
cm

s
m

n
cm

nv
f air

n 5.827
40

331

40
×=== . 

12. A spider makes a web across the inside of an organ pipe 
which is open at both ends. The web is fine but still creates a small 
dissipative force (drag) for any air molecules moving at its location. 
The web is built at the exact midpoint along the length of the pipe. 
Which overtones (harmonics) of the pipe will be most affected by the 
presence of the web? Which overtones (harmonics) will be least 
affected by the web? Explain. 

The key here is that the web won’t affect pressure 
but will affect motion. So the pressure variation due 
to a wave at the location where the web is can be 
pretty much anything. (There would be a problem if 
there were a pressure difference between the two faces 
of the web. In that case, the web could be damaged. 
But a spider web is so thin and porous that no 
significant pressure difference is likely.) However, 
any mode that has a nonzero amplitude for its 
displacement variation will experience a dissipative 
force. Those modes will not build up significantly. On 
the other hand, any mode that has a node (say that 
three times fast!) in its displacement variations at 
the location of the spider web will simply not 
experience the web at all. Those modes will be 
unaffected. 

Since the open end of the pipe results in an 
antinode for the displacement variations at the end of 
the pipe, we have the requirement of a node at the 
middle and an antinode at the end. (Alternatively, you 
can view this as changing a both ends open pipe to a 
pipe with one end closed but of half the length.) Any 
mode which can fit an odd integer number of quarter-
wavelengths in the distance between the end and the 
middle of the pipe will meet these criteria. Thus we 

have 
24
Ln =

λ
 (with only odd values of n). This gives 

n
L2

=λ  with n odd. Notice that this is exactly the same 

as the resonance condition for the original tube, with 
both ends open, except for the constraint that n be 
odd. Thus, we conclude that the spider web will limit 



our organ pipe to its odd harmonics. The even 
harmonics will be weak if they exist at all. 

13. An organ pipe is open at one end. It is designed to play a 
frequency of 440 Hz. If the pipe is designed to operate at a 
temperature of 23° C, what frequency will it play if the temperature of 
the air is reduced to 8°C? (Neglect expansion of the pipe itself.) 

This problem is essentially identical to problem #1. 
It is troubling to some people that you don’t have an 
explicit formula for the speed of sound in air as a 
function of temperature. That is, you know that 

Tconstv ×= . , but you don’t know how to find the 
constant. The neat thing is that you don’t need to! 
For one thing, knowing the speed of sound at any 
temperature will allow you to find the constant (for 
the particular medium under discussion, of course; the 
constant does depend on the particular substance being 
considered) without doing the fundamental calculation 
of it. But this is rarely necessary because we can 
usually find an answer in terms of a ratio which will 
eliminate the constant from the calculation 
altogether. Let’s do it both ways. 

First, let’s find the constant for air. We know that 

at 0° 
s
mvair 331= . Of course, we must use the absolute 

(Kelvin) temperature. So we have 

KconstTconst
s
mvair 273..331 ×=×== . We can immediately 

solve this for the constant to get 

2
103.20

273

331
.

Ks

m
K
s
m

const
⋅

== . (Don’t worry about that funky 

unit. It really is an odd one, but that’s not 
relevant. Don’t let it get to you.) 

Now we could use this constant to find the speed of 

sound in air at any temperature using Tconstv ×= . . But 
that won’t be necessary. Here’s where those of you who 
have broken yourselves of the old habit of obsessing 
over numbers really get their payoff! Let’s see how. 

We know that it is always true that vf =λ . We also 
know that the wavelength of sound in a resonant system 



is determined solely by the geometry of the system. 
(Make sure that you really understand that last 
sentence! It is absolutely essential.) So λ  will be 
the same at both temperatures. (Note that this would 
not be the case if we wanted to include considerations 
of thermal expansion of the pipe itself. One thing 
that’s really interesting is that the effect of 
thermal expansion is to make λ  bigger with higher 
temperature but the effect of the speed of sound’s 
variation is to make the frequency for a given 
wavelength bigger as well. These two effects cancel 
somewhat, but not completely. The net is that organ’s 
[and other wind instruments] are less sensitive to 
temperature variations than the results of this 
problem would lead you to conclude. For your own 
entertainment, I recommend working out the full 
problem—you have all the tools needed to calculate the 
final frequency including both the variation of the 
speed of sound and the change in the length of the 
pipe.) So we can take the ratio of the frequencies at 
the two temperatures and a whole lot of stuff will 
cancel. We have: 

°

°

°

°

°

°

==
23

8

23

8

23

8

v
v

v

v

f
f

λ

λ  

And using the dependence of speed on temperature, 
this gives 

C
C

Cconst
Cconst

v
v

f
f

°

°

°

°

===
°

°

°

°

23
8

23.
8.

23

8

23

8 . 

Of course, we must change the temperature to Kelvins 
before continuing. This gives 

974.0
296
281

23
8

23

8 ===
°

°

°

°

K
K

C
C

f
f

. 

Of course, Hzf 440
23

=° , as stated in the problem. So 

HzHzf 6.428440974.0
8

=×=° . Notice that we never actually 
needed the speed, per se, at all! 



14. Guitars are built such that the twelfth fret (usually a bar of 
metal on the neck of the guitar) is exactly midway along the lengths 
of the strings. Guitarists have learned that touching the string very 
gently at this fret will force a node to occur at that point. A guitar 

string which is 64 cm long with a linear density of 
meter
grams466.4  is 

strung with a tension of 88.5 Newtons. If a guitarist applies gentle 
pressure on the twelfth fret under such a string, what frequency will 
it produce? 

This problem is essentially identical to problem #2: 
Once again, we depend on the fact that the wavelength 
depends only on the geometry of the system. We introduce 
a selective loss into the system that damps any energy 
that finds its way into certain modes while leaving other 
modes untouched (mostly). By touching a guitar string, 
the player forces a node to exist at that location. Thus 
the only modes that can exist are those in which there is 
a node at the midpoint of the string. Effectively, we 
have cut the string in half. 

This suggests two different ways of approaching the 
solution: We can either use the full solution for a 

string of length 
2
L
 or we can keep the length and figure 

out which modes have nodes in the middle. Frankly, I find 
the former method to be easier, so let’s do the latter 
one first. 

We have a string of length L. Since the ends are 
anchored, the allowed modes (those which can support a 
resonance) will be the ones which have nodes at the ends. 
By definition, a sinusoidal wave (one described by a sine 
or cosine function) will have a node every half-
wavelength. Thus we require that an integer number of 

half wavelengths fit into one string length: Ln =
2
λ

. 

Another way of looking at this is to note that the 
resonance requirement is that one full cycle (one full 
wavelength) be gotten through in one roundtrip of the 
wave. This perspective leads us to Ln 2=λ . These are 
identical statements and either perspective is equally 
valid. 

Now, here’s a point where I must admit to not 
understanding exactly what’s going on (I know several 
Physicists who are also musicians and are trying to make 
measurements of this for me): When the string is lightly 
tapped, only the n=2 mode for the full-string (this would 



be n=1 for the half string) is excited. Normally, a large 
number of modes are excited (i.e., vibrating) to a 
greater or lesser extent. This gives sounds a richness—a 
complexity to the timbre of the sound. Typically, the 
lowest possible n mode is vibrating with the highest 
amplitude while higher n valued modes have much lower 
amplitudes. But they are present. In this case, only the 
n=2 mode vibrates. I’ll let you know when I find out 
what’s up. (If the string were fully pressed, the n=2 
mode would also be the dominant mode. But there would be 
small amplitudes in all even-numbered modes.) 

In any event, we take n=2 and get L=λ . Now, the 
problem asks for the frequency. Here we use vf =λ  to get 

λ
vf = . To find the speed of propagation, we use 

µ
TFv = . 

Combining these gives 
L

FF
vf

TT

µ
λ
µ

λ
=== . Substituting 

numbers gives, finally Hz
L

F

f

T

220
meter.64

meter
kilograms10466.4

Newtons5.88
3

=
×

==

−

µ
, 

recalling that 
second

111 =Hz . 

 
 

15. Deferred to next semester. 
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