
PHYSICS 206a 
HOMEWORK #13 

SOLUTIONS 
 
 

1. What is the period of a pendulum with a bob mass of 1 kg, an initial 
angle of 0.1 radian, and a length of 3 meters? 

The period of a pendulum, in the small angle approximation, is given by 

g
LT π2= . If you get confused about whether the g goes on the top or the 

bottom (I can never keep that one straight!), do a dimensional analysis: The units 

of g are 2second
meters . Since we want a final answer in seconds, the g must be in the 

denominator. I find that it’s easier to remember to do the dimensional analysis 
than it is to memorize the formula—I never trust myself to get it right! 

The initial angle is small enough that we can use the small angle 
approximation. So, plugging in numbers, we get 

seconds47.3

second
meters9.8

meters322

2

=== ππ
g
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2. For the pendulum in the previous problem, what is the circular 
frequency? What is the angular frequency? 

The circular frequency is just the reciprocal of the period. Keep these 
straight in your mind: The period is the amount of time it takes to go through one 
cycle. The circular frequency is the number of complete cycles it goes through in 
some fixed interval of time. Written mathematically, this is 

time
cycles ofnumber 

== fcircularω . We are free to pick the interval of time over 

which we want to count cycles, although we usually pick one second as the 
default. Imagine that we pick one period as the interval of time over which we 
count cycles. Well, by definition, in one period we have one cycle. So based on 

our formula above 
Tcircular
1

time
cycles ofnumber 

==ω , as we stated at the beginning. 

So, 
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s
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called “inverse seconds” or just read as “per second.” It is also synonymous with 
a unit called a Hertz (abbreviated Hz)—which we will encounter again next 
semester. This is the total number of cycles (in this case, a fraction of a cycle) that 
the pendulum will go through in each second. 

The angular frequency is basically the same thing, but it’s a bit more 
difficult to describe conceptually. If we regard the pendulum’s position as the 



shadow of a point on a circle rotating at a constant angular speed, the circular 
frequency is the total number of radians that circle will travel through each 
second. Clearly this is synonymous with the angular speed of the rotating circle. (I 
suppose, in principle, that one could do this in degrees, but I’ve never seen it done 
that way and hope never to do so!) While this may seem to be an unnecessary 
complexity, it actually makes calculations much easier: If we’re interested in 
describing the position of the pendulum at any instant of time, rather than just 
describing how many complete cycles it may have gone through, use of the 
angular frequency is essential! Since one complete cycle has 2π radians, the 
angular frequency will be 2π times the circular frequency. This is 

sL
g

Tangular
1807.12
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The most confusing thing about the difference between angular frequency 
and circular frequency is that the unit is the same in both cases. One can read the 
circular frequency’s unit as “radians per second” but this is not always done. One 
would be totally correct simply to read it as “per second,” the same as for the 
circular frequency. Often, even the same symbol is used for the two frequencies! 
Errors due to this ambiguity are common even at a professional level. One simply 
has to know which frequency is being discussed based on context. Often, that 
simply can’t be done unambiguously. Be careful! And, when in doubt, ask. 

3. For the pendulum discussed in the previous problems, what is the 
equation giving the position (in the x direction) as a function of time? 
Take t=0 as the moment when the pendulum is released from its 
initial displacement. Be sure to include the phase! 

The general form of this equation is )cos( φω += tAx angular . Here, A is the 
“amplitude” of the oscillation—the maximum distance from the equilibrium 
position that the bob will swing to on each side of its oscillation. This can be 
found from the initial position at t=0 since, because of conservation of energy, the 
amplitude will be equal to the displacement from which the pendulum was 
originally released. Caution: We do not need to start the clock at the instant the 
pendulum was released! To find the amplitude, find position of the bob when it 
was released, not necessarily at t=0. In this case, we have 

meters.30radian.10meters3 =×=== θLAxinitial . 

Now, to find the phase, we use the amplitude that we just found and take t=0 
in the equation. This gives )cos(φAxinitial = . Of course, we’ve just found that 

, so we must have Axinitial = 1)cos( =φ . This gives us 0=φ . This won’t always 
be the case! The phase allows us to start the clock at any point in the pendulum’s 
oscillation. 

Thus we can write )cos( tAx angularω= . So, our final equation is 

)1807.1cos(meters3.0 t
s

x ××= . 



4. If the pendulum in the previous problems has its bob replaced with 
one of twice the mass, what happens to the frequency? 

The frequency is unaffected by the mass! In a practical sense, having a 
larger mass makes pendula less susceptible to external influences like stray 
breezes and dust specs landing on them, but the mass has no effect on frequency, 
per se. 

5. If the pendulum in the previous problems has its shaft (the “string”) 
replaced with one of twice the length, what happens to the 
frequency? 

The shaft length, on the other hand, has a direct influence on the frequency 
of the pendulum. For problems like this, I prefer to work with ratios—the 
question asks “what happens to the frequency?” which is a roundabout way of 
asking for a comparison rather than a direct number. Working with the angular 
frequency (it doesn’t really matter which one—they both depend on the string 
length the same way), let’s call the new (longer-string) angular frequency newω  

and the old one oldω . This gives 707.0
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sold
1807.1=ω , we have 

ssnew
1278.11807.1707.0 =×=ω . 



6. A spring has a constant 
meter

Newtons7=k . The spring is oriented 

vertically and a mass of 30 grams is hung from it. 
a. Draw a free-body diagram for the mass when it at rest at its 

equilibrium position. Give the sizes of all the forces in your 
diagram. 

b. The mass is pulled down 5 cm by someone’s hand and held in 
that position. Now draw a free-body diagram for the mass. 
Give the sizes of all the forces in your diagram. 

c. The spring is released. How high up does it go? 
d. At the top of its travel, just when it has stopped and is about to 

begin moving down again, draw a free body diagram for the 
mass. 
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Initially, before the mass was attached, the spring had some unstretched 
length. When the mass was attached, the spring stretched out enough that the 
spring’s force was exactly equal to the force of gravity on the mass. The mass’s 
position after this stretch is called the “equilibrium position.” All future motion of 
the mass is measured relative to this position because at this position the net force 
on the mass is zero. We from here on, if we like, we can pretend that gravity 
doesn’t exist and that the force exerted by the spring at its equilibrium position is 
zero. Since these two cancel, they might as well not be there. This is shown in the 
figure for a. 

When the spring is stretched by 5 cm from its equilibrium position, the force 
exerted by the hand must be exactly the same as the additional force exerted by 
the spring due to its stretch. This is found from Hooke’s law: , where x is 
the stretch from the equilibrium position. This is shown in the figure for b. 

kxF −=

We can use conservation of energy to see that the mass will rise the same 
distance above the equilibrium position as it was originally pulled down below the 
equilibrium position. Here is where confusion comes in: You might well be 
tempted to include gravitational potential energy in the problem. Don’t! Recall 
that the potential energy in the system represents work done on the system that is 
still available to the system. Since the spring is pulling up on the mass with a 
force that is equal to the weight of the mass plus the force needed to resist the 
hand, the force of gravity might as well not be there at all. The work that the hand 
did pulling the mass down was just the force needed to move it from its 
equilibrium position times the distance from the equilibrium position that the 
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mass was pulled. (Notice that the force is not constant so we cannot simply write 
.) FxEP =..

So, because we can ignore gravity, it becomes obvious that at the bottom of 
its travel the kinetic energy of the mass is zero (it’s stopped) and at the top of its 
travel it is also zero. All energy is potential. The potential energy of the spring is 

2
2
1.. kxEP = . This is independent of whether x is positive or negative, so the mass 

travels 5 cm up past the equilibrium position. 

For part d., there are actually two possible answers. This is why: As stated 
above, the spring starts out unstretched, before the mass is hung from it. Let’s say 
that when the mass is hung on the spring it stretches a distance x0 to reach its 
equilibrium position. Now, unlike a string, a spring can either pull or push. Our 
spring will pull until it has been compressed to its unstretched length, then it will 
begin to push. Since gravity is pulling on the mass continuously, after the mass 
passes the equilibrium position the net force on the mass will be downward. 
However, the spring will still be pulling upward until it has traveled up a height 
x0. After that, the spring will begin pushing. It is crucial for you to realize that the 
difference between the two regimes is totally irrelevant to the motion of the mass. 
So far as the mass is concerned, only the deviation from the equilibrium position 
is relevant. However, to get our free-body diagram correct, we need to determine 
whether the initial pull (5 cm) is either greater than x0 or less than x0. If it’s greater 
than x0, the force of the spring on the mass will be downward at the top of its 
trajectory. If the initial pull is les than x0, the force of the spring will be upward at 
the top of its trajectory. Since the weight of the mass is .294 Newtons, using 

Hooke’s law we have cm
k

Wx 2.4

meter
Newtons7

Newtons294.
0 === . Thus, x0 is less than the 

initial pull and we can conclude that at the top of the trajectory the spring will be 
pushing on the mass. Since the difference between the unstretched length and the 
equilibrium position is 0.8 cm, we can conclude that the downward force exerted 

by the spring is NcmkxF 056.8.
meter

Newtons7 −=×−=−= . This is pictured on the 

next page. 
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7. For the system in the previous problem, what is the frequency of 
oscillation of the mass? 

Just a formula (memorize it!): 
m
k

=ω . In this case, this gives 

Hz
m
k 28.15

kilograms03.
meter

Newtons7
===ω . (This is the angular frequency.) 



8. A molecule of carbon monoxide vibrates as though the two atoms in 
it were held together by a spring. The spring constant in this 

situation is 
meter

Newtons5.465=k . Find the circular frequency of the 

vibrations of this molecule. Note: Because the two masses move 
together rather than one mass moving while the other end of the 
spring stays fixed (as in our usual setup) you must use the “reduced 

mass” for this system. This is 
21

21

mm
mm
+

=µ  where the masses are 

those of the carbon and oxygen atoms, respectively. Just use µ 
anywhere you would normally use m in this calculation. 

This is basically just a one-liner except for the need to convert masses. I just 
wanted you to see that masses on springs aren’t limited to the contrived 
environment of classroom demonstrations. The numbers I’ve used are real-world 

quantities. We once again use 
m
k

=ω , however we want the circular frequency 

rather than the angular frequency. (The people who study molecular dynamics use 
circular frequency, by convention.) Also, we have to substitute µ for m, as stated 

in the problem. Thus, we have 
µπ

ω k
circular 2

1
= . 

Now, let’s figure out the reduced mass. The mass of a carbon atom is 12 
amus (atomic mass units) while that of an oxygen atom is 16 amus. This gives a 

reduced mass of amu
mm

mm 86.6
7
48

1216
1216

21

21 ==
+
×

=
+

=µ . Converting, we have 

kg
amu
kgamu 2627 1014.11066.186.6 −− ×=××=µ . This gives, 

Hzk
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9. A 2 kg mass rests on a frictionless, horizontal surface. It is attached 

to a spring connected to a wall, as shown above. It is pulled 11 cm 
from its equilibrium position before being released. The spring 

constant is 
meter

Newtons15=k . What is the speed of the mass as it 

passes through the equilibrium position? 
There are two ways of doing this. The easiest is to use conservation of energy, 

but I haven’t given you the tools to use that yet. So we’ll just use the formula derived 
in class. I’ll do it using conservation of energy next, just to show you how it’s done. 

In class, we showed that the speed of an object oscillating under a Hooke’s 
Law type force (Simple Harmonic Motion) is given by )sin( φωω +−= tAv . Now, we 
could go through a lot of work to find out what the time is in this situation. Or, we 
could be clever. I like being clever! The quantity in parenthesis, )( φω +t , is called the 
“argument” of the sine function. Sine doesn’t care how the argument got to any 
particular value—is time zero and there’s some phase, or is phase zero and there’s 
some time, or is there some combination of phase and time? It doesn’t matter. If we 
look at the equation for the position of the mass, )cos( φω += tAx , we see that the 
mass will pass through the equilibrium position ( 0=x ) when the argument is equal 

to 
2
π . (Or K

2
5,

2
3 ππ , it repeats every π  radians.) So all we need to do is say 

2
)( πφω =+t  and then find that ωφωω AtAv −=+−= )sin(  at that instant. Now all 

we need to do is find ωandA . 

Since we know that the mass was initially pulled back 11 cm, we can state that 

. For the frequency, we just use the formula, mA 11.0=
m
k

=ω . Inserting numbers 

into this, we get 
skg

meter
newtons

m
k 174.2

2

15
===ω . Thus 

s
m

s
mv 30.0174.211.0 =×= . 

Using conservation of energy, this is essentially identical to the problems we 
did with gravity when a mass was dropped from some height. The biggest difference 



is that the potential energy is represented by a different equation. Let’s do it in detail, 
however. 

Our conservation of energy expression is (as always) . 
Our mission is to determine the constant. Any problem that can be solved using 
conservation of energy will have some point at which we know enough to determine 
the constant. In this case, we can find this from the initial condition: The spring was 
initially stretched a known distance. Since the potential energy stored in a spring 

compressed or stretched by a length x is given by 

constantEKEP =+ ....

2

2
1.. kxEP =  and we know both k 

and x, we can find the potential energy at the beginning. When the spring is initially 
stretched, its speed is zero, so there is no kinetic energy at that point. So our constant 

is just the initial potential energy. Thus, we have at any time 2

2
1.... originalkxEKEP =+ . 

We could easily use the equation that we just found to determine the speed of 
the mass at any position in its oscillation. This is an incredibly powerful technique! 
However, all we need is the speed at the instant the mass passes through the 
equilibrium position. At that point, the potential energy is zero. Why? Well, because 
the force is zero at that point. We have selected it to be the origin of our coordinate 
system. This is the point at which 0=x . So our conservation of energy equation 

gives us 2

2
1.. originalmequilibriu kxEK = . Now, I warned you of a trap back when we were 

doing gravitational potential energy and that same trap is still present: The 
conservation of energy equation is constantEKEP =+ ....  and this is the form you 

should use. Do not just write 22

2
1

2
1 kxmv = ! This happens to be true in this one, 

simple case. It is not true in general. 

Here, we have 22

2
1

2
1

originalmequilibriu kxmv = . And now it’s just a bit of algebra to 

get 
m

kx
v original

mequilibriu

2

= . Inserting numbers, we have 

( )
s
m

kg

m
m
N

v mequilibriu 30.0
2

11.015 2

=
×

= , as before. 

 

 

 

Problems #10 and #11 have been moved to the next assignment 
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