
PHYSICS 206a 
HOMEWORK #12 

SOLUTIONS 
 

1. A sample of gas has a pressure of 105 Pascals. (By the way: The 
atmospheric pressure at sea level is 101,325 Pascals.) If this gas is 
held in a cylinder that is capped with a piston with an area of 10 cm2, 
as shown, what mass can be placed on the piston so that it is just 
supported by the gas? (Assume that the piston and cylinder are 
housed in a vacuum—i.e., ignore the pressure of surrounding air.) 

Since the mass isn’t accelerating, the net force on it is zero. There are two 
forces that we can identify acting on the mass (draw a free body diagram to 
confirm this for yourself!): The force of gravity pulling it down and the force of 
the piston pushing it up. The force exerted by the piston comes from the gas in the 
cylinder. We know the pressure of the gas and its area, so the total force exerted 

on the piston by the gas is PAF =  from the definition of pressure (
A
FP = ). 

Setting these equal to each other, we have  so PAmg =
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2. Now, again consider the system in the previous question. Take the 
pressure of the surrounding air to be 101,325 Pa. If the mass to be 
supported is 13 kg, what pressure of gas must be used to fill the 
cylinder? 

Now the force on the piston pushing down is the combination of the weight 
of the mass and the pressure of the atmosphere times the area of the piston. If we 
put enough gas into the cylinder to create a pressure exactly equal to that of the 
atmosphere on the outside, we’ll basically be back to the previous problem. So 

our pressure inside can be written 
A
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3. The three vessels pictured above are all filled with water and are all 
sealed. Which one has the highest pressure at the bottom? Which 
one has the highest pressure at the top? Explain your answers! 

The pressure at the same height of each of the containers is exactly the 
same! According to Pascal’s principle, the pressure at a given depth in an 
incompressible fluid in a sealed container is independent of the shape of the 
container or the location at that depth. 

321

4. Molecules of N2 (nitrogen) in the air have an average speed of 

second
meters500  at “room temperature” (about 300 K). (You will be 

calculating this value for yourselves in a later problem.) Consider a 
container holding nitrogen at 1 atmosphere of pressure. Assuming 
their collisions with the walls of the container are perfectly elastic, 
use the “impulse-momentum theorem” to determine the average 
number of molecules which impact a 1 cm2 region of the wall of the 
container in one second. (Recall that the impulse-momentum 
theorem says that the total change in momentum in some interval of 
time is equal to the average force exerted multiplied by the time 
interval over which that force is exerted.) 

Way back in assignment #7 we discussed the momentum change of an 
object which bounces off a wall. We found that, for elastic collisions in one 



dimension, the change in the momentum of the object is twice the incoming 
momentum . According to the impulse-momentum theorem, inpp 2=∆ Ftp =∆ . 
That is, the change in momentum of the molecule is the force exerted on it by the 
wall multiplied by the time over which that force acts. Now, if we were interested 
in a single collision, the time would be extremely short—probably less than 10-15 
seconds or so. But we’re not interested in a single collision. We are interested in 
the average force over a very large number of collisions occurring over a 
relatively large area. If we consider not one molecule but some large number N of 
molecules and ask for the average force on them, we can use the impulse-
momentum theorem to write FtpN =∆  where p∆  is the average change in 
momentum of the molecules. Now, t is not the time of one collision but the time 
of the N collisions—one second, in this case. 

Since we know the pressure and the area, we can solve for the force. 
Likewise, we know the average speed of the molecules and their mass, so we can 
solve for the average change in momentum of the molecules. So, we can write 
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So there will be approximately 1023 collisions per second of nitrogen 
molecules with the 1 cm2 section of the walls! It is the fact that this number is so 
huge that allows us to take the average without too much concern. The size of the 
region we’re looking at or the time over which we’re looking must be very tiny 
before the averaging doesn’t give a very good answer. 



5. A cylinder of wood is 17 cm long with a diameter of 3 cm. It has a 

density of 3cm
gram7. . If the piece of wood is placed in water and its long 

axis is oriented vertically, how high above the surface of the water is 
the top of the cylinder? 

According to Archimedes’ principle, the buoyant force on the stick will be 
equal to the weight of the water displaced by the stick. Let’s think about this for a 
second. What this means is that the water will provide an upward force on the 
stick of some amount, call it FB. Gravity pulls down on the stick with a weight 

. When we place the stick into the water, the upward force will grow as 
more and more of the stick becomes submerged. The water which used to occupy 
the volume now occupied by the stick is the “displaced water.” It has some 
weight. Since the stick is less dense than the water, a volume of water less than 
the total volume of the stick will weigh the same as the stick. Read that last 
sentence through again. Make sure you understand it—it is the key sentence in 
this analysis. As we lower the stick into the water, the buoyant force will increase, 
according to Archimedes’ principle. At some point, the weight of the displaced 
water will be the same as the weight of the stick. This is the point at which the 
stick will be able to float. We could lower the stick even further, but then we’d 
have to push down actively to get it to stay under. The buoyant force would be 
greater than the weight of the stick beyond the floating point. We’re not 
interested in that situation now, however. If we just let go of the stick, the stick 
will float and the buoyant force will be identical to the weight of the stick. 
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The volume of a cylinder is  where h is the length (height) of the 
cylinder. This can also be written , where A is the cross sectional 
area of the cylinder ( ). Thus, the total weight of the cylinder of wood is 

hrV 2π=
AhhrV == 2π

2rA π=
LAgW woodwood ρ=  where woodρ  is the density of the wood and g is the strength of 

gravity at the surface of the Earth, as usual. The weight of the displaced water is 
AgHW Bwaterwater ρ=  where waterρ  is the density of the water and HB is the height 

below water of the cylinder. When the cylinder is floating, these two are equal to 
each other, so we have LAgAgH woodBwater ρρ = . A bit of algebra gives 

LH
water

wood
B ρ

ρ
=  or, using the numbers given, cmcmLH B 9.11177.07.0 =×== . 

Of course, the question asked for the height above water of the top of the 
cylinder, so we just subtract the height below water from 17 cm and get 

. (That’s just a detail. If you missed that aspect on an exam I 
probably wouldn’t dock you anything.) 

cmH A 1.5=

6. Now, the cylinder in the previous problem is placed in a tank of oil, 

with a density of 3cm
gram8.0 . How high above the oil will the top of the 

cylinder be found in this case? 
We can just use the equation found in the previous problem with the density 

of the oil substituted for the density of the water: LH
oil

wood
B ρ

ρ
= . This gives 

cmcmH B 875.1417
8.0
7.0

=×=  for a height above water of . cmH A 125.2=

 

7. A cube is to be built of steel sheets. (The cube will be hollow and 

filled with air when finished.) The density of the steel is 3cm
gm9.7=ρ . 

The sheets of steel are ½ cm thick. What is the minimum width of the 
cube (i.e., the length of one side) such that the cube will float in 
water? 

Ships are routinely built of steel, we know this. But we also know that steel 
is far more dense than water. A chunk of steel placed in water will sink. So how 
does a steel ship manage to stay afloat? Well, Archimedes’ principle says that the 
buoyant force experienced by an object will be equal to the weight of the fluid 
displaced by the object. If we can take steel and ensure that it displaces a greater 
volume than of the steel itself, the buoyant force can be made arbitrarily large. 

Consider the cube in this problem. The cube is sealed. It is hollow. So the 
volume of the cube is significantly different than the volume of the steel sheets 
that are used to make it. By making the cube big enough, we can make it float. 



Let’s begin by finding the volume of the cube. Let’s call the width of the 
cube  (this is the quantity that we are looking for). The volume of the cube will 
be . Now, here’s the key step in the whole problem: We want to make sure 
the cube floats. What does the word “float” mean in this context? It means that the 
buoyant force experienced by the object is exactly equal to the weight of the 
object. Let’s imagine that we’ve got the cube sitting in some water, completely 
immersed. If we were to make the cube bigger, it would displace more water and 
the buoyant force would increase. If we were to make the cube smaller, the 
buoyant force would decrease. Note that this has nothing to do with the weight of 
the cube! The buoyant force only depends on the volume of the cube and the 
weight of the water, not on the weight of the cube. Now, we want to make the 
cube exactly the right size so that the buoyant force is equal to the cube’s weight. 
So, using Archimedes’ principle, . We’re stuck unless we can 
find the mass of the cube. 

L
3LV =

gmgL cubewater =ρ3

The cube is made out of sheets of steel. They’re all identical and we’ll need 
six of them to make the cube. So the mass of the cube is equal to six times the 
mass of one side. We can say sidecube mm ×= 6 . (Let’s ignore the mass of the air 
inside the cube. It will have only a tiny effect.) What is the mass of a side? Once 
again, this is the volume of one side of the cube times the density of the steel, 
which you were given. If we can find the volume of the side, we’ll be done. 

The side of the cube is a square with some thickness. We are told the 
thickness, but let’s just call it t for now. The volume of a side of the cube is just 

 so the mass of the side is . This allows us to find the 
mass of the entire cube: . 

tLVside
2= tLm steelside

2ρ=

tLmm steelsidecube
266 ρ×=×=

Finally, we can insert this back into our original expression to get 
. A bit of algebra gives tgLgmgL steelcubewater
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8. A tank of oil and a tank of water are separated by a single wall, as 
shown. If a hole is drilled in the wall separating the tanks, which 
direction will fluid flow? I.e., will the water get into the oil tank or will 
the oil get into the water tank, or will they both stay put? Explain! 

To understand this, we must understand why there is a pressure at a certain 
depth in a fluid. Imagine that you’ve divided a column of fluid into layers, as 
shown in the picture. The top layer supports only its own weight, so the pressure 
in that layer is very small—let’s call it zero, roughly (we could make this exact by 
using techniques that are very familiar to those of you who have had calculus). 
The next layer down supports the top layer, so the pressure is somewhat higher. 
The layer below that must support the first two layers and so the pressure in that 
layer is higher still. Now, continue this process all the way down a depth h. At the 
bottom of the column, the total force being exerted by the lowest layer is the 
weight of the full column. This force is AhW ρ= . Since pressure is force divided 

by the area over which the force is acting, we can say h
A

WP ρ== . Thus the fluid 

with the higher density will have the greater pressure at a given depth. Water has 
a higher density than oil. (This is a common source of error: Oil is more “viscous” 
than water. That is, it’s thicker and more difficult to move through. So it feels 
heavier than water: If you stick your hand in a bucket of oil, more oil will stick to 
it when you pull it out than if the bucket had been filled with water. We interpret 

Oil Water 

h Oil Water 



this to mean that the stuff itself is heavier, even though the perceived heaviness is 
just due to more stickiness. Oil floats on water—as many Alaskan seabirds and 
seals can attest thanks to the noble Physics demonstration performed by the 
Exxon corporation in 1989. This is because it is less dense than water, despite 
being more viscous.) Therefore, a column of oil will weigh less than an identical 
column of water. 

If a hole were drilled in the wall between the tanks, water would flow from 
its tank into the oil. This would continue until the level of the liquid in the oil side 
had risen far enough and the level in the water side had fallen far enough that the 
pressures were the same on both sides. 

Personal history note: Before coming to SIUE, I worked with a device that 
was held in a large tank that looked very much like the one in the picture above. 
The water side held 15,000 gallons while the oil side held 8,000 gallons. We had 
to be very careful that, when emptying or filling one of the fluids, we’d empty or 
fill the other tank at the same rate. Otherwise, a pressure difference between the 
two could have resulted in the wall between them breaking! 

9. Again consider the tanks in the previous problem. Assume the hole 
is drilled 2 meters above the bottom of the tanks. What depths, hw 
and ho (for “water” and “oil” respectively), must the tanks be filled to 
without any flow occurring? 

Note that the 2 meter datum is something of a red herring: The only distance 
that matters in doing the pressure calculation is the height above the hole. The 2 
meter height is a bit important, though: As water flows into the oil tank, it will 
sink to the bottom. If so much water flows into the oil tank that it actually pools to 
a depth that takes it above the hole, calculating the pressure becomes a bit more 
difficult. So let’s assume that all the water that makes it into the oil tank just sinks 
to a level below the hole. There will be no flow when the two pressures are equal. 
Based on the results of the previous few questions, this will occur when 

ooww hh ρρ = . Thus, we need o
w

o
w hh

ρ
ρ

=  to prevent flow. 



10. 2 gallons of water per minute flow through a pipe with a diameter of 
5/8 inch. What is the speed at which the water is flowing? 

The key to solving this problem is to visualize it correctly. The way that I 
find works best is to imagine the pipe as having a piston in it that is pushing the 
liquid out, as shown above. In some sense this is true: The water acts as its own 
piston. The crucial thing is to recognize that a volume of pipe equal to 2 gallons 
empties out in one minute. This volume will be the area of the pipe, A, times the 
length of the pipe which empties in one minute, L. This is ALV = . 

Now, since the speed of the liquid is the same as the speed of our imaginary 
piston, we realize that the piston will move a distance L in a time t. This means 

that the piston’s speed is 
t

v L
= . But 

A
VL =  so 

tt
v

A
VL

== . The volume is 2 

gallons and the time under consideration is one minute. All that remains is to find 
the area. 

Here’s where the metric system comes in very handy. In the English (or 
“Imperial”) system which includes inches and gallons, there is no clear 
relationship between lengths and volumes. How many cubic inches are there in a 
gallon, for example? It’s a tough problem! The metric system has a fixed 
relationship between volumes and lengths. Since a volume is always created by a 
product of three lengths, the unit for a volume is just a product of the unit for 
length cubed. Finding the area of the pipe in square inches while knowing the 
volume in gallons just wouldn’t help much in finding the length emptied. On the 
other hand, knowing the area in square centimeters and knowing the volume in 
liters (1000 cubic centimeters in one liter) would give us the length immediately. 
So let’s convert the diameter to centimeters and the volume to liters. 

There are 2.54 centimeters in one inch. So our radius is 
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Gallons to liters is best just looked up in a table somewhere (check the 
internet). There are 3.785 liters in one gallon. So the volume that passes out of our 
pipe in one minute is liters7.57liters3.7852V =×= . 

Putting all these together (and using the fact that there are sixty seconds in 
one minute), we have 
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11. If a connector is added to the pipe in the previous problem which 
increases the diameter to 7/8 inch, at what speed will the water flow 
through the enlarged section? Which section will have a higher 
pressure: The large one or the small one? 

For an incompressible fluid, the continuity equation says that the product of 
area and speed is conserved. That is, in any two regions of a pipe . 
Thus, to find the speed in another region if we know the speed in one region we 

just need to divide to get 

2211 vAvA =

2
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The pressure will be higher in the section in which the area is higher and 
where the speed is lower. 



12. A scientist has a one-liter container of oxygen and two one-liter 
containers of hydrogen. All three containers are at the same 
pressure which is 15 pounds per square inch. They are also at the 
same temperature which is 400 Kelvin (quite hot). He mixes all three 
containers together and, after he recovers from the injuries he 
sustains in the ensuing explosion, he repeats the experiment using a 
stronger container. He finds that he has a container full of water 
vapor at the end. If the water vapor is allowed to cool to 400 Kelvin 
and the size of the container is adjusted (perhaps by means of a 
piston) so that the pressure of the water vapor is 15 pounds per 
square inch, what will be the volume of the container of water vapor? 
(This sounds more complicated than it actually is. Try drawing some 
pictures to help yourself understand what’s going on.) 

(This is almost precisely a restatement of the experiments of an early 
chemist named Joseph Louis Gay-Lussac, which were pivotal for the acceptance 
of the notion of atoms.) The key concept here is that we can ignore the volume of 
a gas that’s actually taken-up by the atoms or molecules of which the gas is 
composed because the molecules themselves are so tiny compared to the average 
distance between them. That is, if I have two gases, one composed of atoms and 
the other of molecules that are several times the size of the atoms, the fact that the 
molecules are bigger makes no difference at all. The volume of a certain number 
of atoms or molecules of a gas at a given pressure and temperature is independent 
of the size of those atoms or molecules. What’s important is the distance between 
them. 

In the experiment described, the scientist starts with three equal volumes of 
individual particles: Molecules of either Hydrogen or Oxygen. They are all at the 
same temperature and pressure so they must each have the same number of 
molecules. That’s important. All three samples have the same volume, the same 
pressure, and are at the same temperature, so they must each have the same 
number of molecules. It doesn’t matter that Oxygen molecules are somewhat 
larger than Hydrogen molecules. 

So, the scientist starts out with a total of three volumes of “stuff.” He mixes 
these together and the Hydrogens and Oxygens combine in the ratio of two 
Hydrogens to each Oxygen to form water. Now what the scientist has is not three 
times some particular number of atoms, but one times that number of molecules 
since each molecule is made out of three of the original atoms. But the size of the 
molecule doesn’t matter. All that matters is the fact that the scientist now has the 
same number of molecules, in total, as he originally had of molecules in any one 
of the original containers. The pressure is the same, as is the temperature, so the 
volume must be the same as one of the original three containers. 

 



13. If I have a sample of a gas at 310 K at a pressure of 100,000 Pa, what 
is the volume, V, it occupies? 

From the ideal gas law TNkPV B=  we get 
P

TNkV B= . I actually intended 

to tell you how many molecules there were in the sample, but this somehow 
didn’t make it into the posted assignment! Sorry. The solution is simply the 
equation above with numbers plugged in, but, lacking the number of molecules, 
we just can’t take it any further. 

For completeness, however, let’s assume that we have one mole of 
molecules. This is  molecules. Inserting numbers, we have 231002.6 ×=N
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