
PHYSICS 206a 
HOMEWORK #11 

SOLUTIONS 
 

 
1. Using Newton’s law of gravitation, derive the acceleration due to 

gravity experienced by an object of mass m at the surface of the 
Earth. Show that this acceleration is independent of the mass of the 
object. 

Newton’s law of gravitation says that the gravitational force experienced by 

an object of mass  due to an object of mass  is given by 2m 1m 2
21

r
mmGF =  where 

G is a universal constant and r is the distance between the centers of the masses. 
The force is always attractive and acts in the direction of a line drawn between the 
centers of the masses. You must memorize this! (Not just the formula—all the rest 
of it as well.) One very common error is to see the letter “r” in that equation and 
to assume that it is the radius of something. (Just one danger of formula hunting!) 
This is by no means necessarily the case! r is the distance between the centers of 
the two masses. That’s it. Now, if we’re talking about the force experienced by an 
object sitting on the surface of the Earth, then, indeed, r is the distance from the 
center of the Earth to its surface—its radius. But don’t just assume that r is a 
radius! 

Calling the mass of the Earth  and the mass of the object m, we get eM

2r
mM

GF e= . According to Newton’s second law, the object will experience an 

acceleration due to this force if it is the only external force acting on the object. 
The relationship between the acceleration and the force is maF = . Thus, we can 

write ma
r

mM
G e =2 . A tiny bit of algebra gives a

r
M

G e =2 . Thus the acceleration 

due to gravity is independent of the mass of the object being accelerated—as was 
theorized by Galileo. 

Substituting in numbers for the surface of the Earth, we get 
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Obviously, this is the number we’ve been using all semester. Now you know 
where it comes from! 

 
2. If the radius of the Earth changed and became ½ of its current value 

(but the mass stayed the same), what answer would you get for the 
previous problem? 

I’m afraid the wording of this problem was a little ambiguous. What I meant 
was that the radius changes and that the object remained on the surface. If the 



radius changes but the object stays at the old radius, nothing changes. If the radius 
changes and the object remains on the surface, the ratio of the old acceleration to 

the new acceleration will be given by 
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. (How 

many of you forgot to square the ½?) So the new acceleration would be four times 

as great as the old acceleration—we’d have 2second
meters2.39=g . 

3. Determine the acceleration due to gravity for an object on the 
surface of the Moon. 

Here we need only repeat the analysis we did in problem #2 only using the 
numbers for the mass and radius of the Mooon: 
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roughly 1/6 of the acceleration on the surface of the Earth. 

4. The “Clarke orbit” is named for science fiction writer Arthur C. Clarke. In 
1945, Clarke suggested that there was an altitude above the surface of 
the Earth at which satellites would have the same angular speed as the 
Earth (Wireless World, October 1945, pages 305-308). Thus, a satellite 
placed in such an orbit would be “geosynchronous.” That is, it would 
stay suspended over a single point on the globe. By setting the force of 
gravity equal to the centripetal force, find the radius of such an orbit. 
(Careful: Don’t confuse the distance from the surface of the Earth with 
the radius of the orbit! They differ by the radius of the Earth.) There are 
currently over 300 satellites occupying such orbits! 

Recall our discussion about centripetal acceleration: To say that an acceleration is 
centripetal is simply to say what direction it is. The force providing that acceleration can 
come from any appropriate source. In this case, the force of gravity is being used to 
create the centripetal acceleration. Since we do not know, initially, the distance from the 
center of the Earth to such an orbit, we cannot assume that the acceleration will be 
anything like what it is at the surface of the Earth—in fact, they’re quite different. (Recall 
Newton’s original derivation of the centripetal acceleration of the Moon.) We simply 
need to take the expression for the acceleration due to gravity and the needed centripetal 
acceleration and set them equal to each other. 

We have 
r
v
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2 = . Now, we use the angular speed relation rv ω=  to rewrite 

this as 2
2 ωr

r
M

G e = . This gives 3
2 r

M
G e =
ω

. Now, the definition of the angular speed is 

the angle traveled divided by the time it takes to travel it 
t
θω ∆

= . The requirement for 



our satellite to be geosynchronous is that it travel through one full circle in one day, so 

πθ 2=∆  and . This gives seconds86400day1 ==t 32
24

rt
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. (See the next 

problem for some interesting insight into this intermediate result.) 

Solving for r, we have 3 2
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= . Substituting numbers, we get 
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This is 35,800 km from the surface of the Earth. In English units, this is about 26,000 
miles from the Earth’s center or 22,300 miles above the surface of the Earth. 

These satellites are used primarily for weather and communications. If you’ve got a 
satellite antenna for your television, the reason you are able to keep your dish antenna 
pointed in only one direction is that the satellite it is receiving a signal from is in a Clarke 
orbit. If you go out at night and look in the direction the antenna is pointed, you very well 
might be able to see the satellite! Of course, it will just look like a dim star, but it will 
remain in one position as the background stars move across the sky in the course of the 
night. 

 
5. Generalize the result you found in the previous problem: By using 

gravity as the thing providing an orbiting object with its needed 
centripetal acceleration, prove Kepler’s third law. What is the constant 
of proportionality? I.e., Kepler’s third law says that  where T is 
the period of the orbit, R is the mean radius of the orbit, and k is some 
constant. Find k. You should assume the orbit is circular. 

32 kRT =

Note the equation we got in the previous problem along the way to the final answer. 

At one point we found that 32
24

rt
M

G e =
π

. This was found simply by assuming that an 

object is traveling in a circular path and that the centripetal force needed to keep it in that 
path is provided by gravity. Thus, this equation is true in general—it is true for any object 
in an “orbit,” not just satellites of the Earth and not just those in geosynchronous orbits. A 

small manipulation gives 3
2

2 4 r
GM

t π
= . Note that I’ve dropped the subscript on the mass 

since this is true for any object being orbited, not just the Earth. For a different object 

(e.g., the sun) we’d just substitute the appropriate mass. The entire factor 
GM

24π  is a 

constant for a given system, so we can replace it by a single symbol for simplicity. This 

gives  where 32 krt =
GM

k
24π

= . This is what was to be found. (If you really want a 

number, just substitute the appropriate values for a given system in this equation.) 



6. Some years ago, a (crackpot) theory circulated which predicted doom 
for the Earth due to the gravitational effect of the planets all lining up. 
This effect was known as “The Jupiter Effect”—which was the title of 
the book in which this prediction was made. The Earth did not, in fact, 
suffer any of the ill effects predicted. Calculate the force of gravity 
exerted by Jupiter on a person on the surface of the Earth when the two 
are closest. Jupiter’s mean distance from the Sun is  and its 
mass is . The Earth’s mean distance from the sun is 

. What mass of object would have a weight on the surface of 
the Earth equivalent to the force of gravity of Jupiter on this person? 

m111079.7 ×
kg24109.1 ×

m111049.1 ×

The force of gravity exerted on one object by another depends only on the two 
masses and the distance between their centers. Let’s call the mass of the person  and 
the mass of Jupiter . I didn’t give you the Earth-Jupiter distance, but I gave you the 
distance from each of these to the sun. The distance from Jupiter to the Earth is just the 
distance from Jupiter to the sun minus the distance from the Earth to the sun. (This is only 
true when they are at “closest approach.” At other times, more complicated geometry 
would be necessary.) I made a real booboo in this problem: I mistyped the mass of 
Jupiter! It should have been given as —a factor of 1000 different from what I 
gave you. I do apologize for this. (Note that this is about 300 times the mass of the 
Earth!) I’ll do the calculation using the correct numbers. Please take a look at your 
solution and think about how it would change with these numbers inserted appropriately. 
Let’s take the mass of the person to be 100 kg (pick whatever value you think reasonable 
or just call it m). 

pm

Jm

kg27109.1 ×

We have ( )2sunEarthSunJupiter

pJ

rr

mm
GF

−− −
= . Substituting numbers, we have 

( )

( )
N

mm
kgkg

kg
mN

rr

mm
GF

sunEarthSunJupiter

pJ

5

21111

27

2

2
11

2

1019.3
1049.11079.7

100109.11067.6

−

−

−−

×=
×−×

××
×

⋅
×=

−
=

 

For an object to have this weight on Earth, it would need to have a mass given by 

, which yields Nmg 51019.3 −×= kg

s
m
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= . This is the mass of 

a small grain of sand. 

While this force is very small, notice that it is still large enough that it doesn’t seem 
unreasonable to expect that we could measure it. Indeed, a measurement of the effect of 
this force is quite feasible. It’s small, but not completely negligible! Jupiter (and all the 
other planets in the solar system) does have an effect on Earth. Usually, we can ignore it, 
but it would be important if we were doing calculations to predict, for example, long-term 
climatological effects. 



7. What is the difference in the force experienced by a cubic meter of 
water due to the Moon’s gravitational pull when the Moon is on the 
same side of the Earth as the water and when the Moon is on the 
opposite side of the Earth as the water? (I.e., about 12 hours later.) 
What is the force of the Earth’s gravity on that quantity of water (i.e., 
its weight)? 

Recall that tides are caused, primarily, by the gravitation of the moon pulling water 
away from the Earth. Of course, the Moon “loses” the competition, but it has a significant 
effect nonetheless. The Moon has an average distance from the center of the Earth of 

. The radius of the Earth is . (Notice that I’ve used a 
similar symbol, r, for two very different things here: Newton’s law of gravitation 
specifies that we need the distance between the centers of the masses under consideration. 
In this case, I also need a radius in order to find that distance. Don’t fall into the trap of 
thinking that r means “radius.” In this context, it might mean radius. But it also might just 
mean the distance between the centers of a pair of objects. You will need to determine, 
from context, which of these is appropriate.) Thus, when the water is on the same side of 
the Earth as the Moon is we will have 

mrm
810844.3 ×= mrE

610378.6 ×=

Emclose rrR −= . When the water is on the opposite 
side of the Earth from the Moon we will have Emfar rrR += . 

Using these expressions, the difference in force experienced by the water between 
the two locations is 
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Now, the mass of a cubic meter of water is 1000 kg. So we have 
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This is roughly equivalent to adding one cubic centimeter of water to the sample with the 
Moon at its farthest location and removing one cubic centimeter of water from it when 
the Moon is at its closest approach. 

For comparison, the force exerted by the Earth on our cubic meter of water is 
. So the Moon’s effect is about 0.2 parts per million on 

the weight of the water. Still, this is sufficient to cause the tides which are essential to life 
on Earth! 

NkgmgW 98008.91000 =×==



An interesting side note to this is that the work done on the water, lifting and then 
dropping it, has a dissipative piece. There is energy lost every time a wave slaps on the 
shore. This energy is being extracted from the Moon’s orbital energy (rotational kinetic 
energy). So the moon is slowly moving away from the surface of the Earth—each year, 
the moon is a few cm farther away than in the previous year. (This motion has been used 
to “prove” that the Earth cannot be as old as scientific measurements indicate it to be. 
Unfortunately, the folks who promulgate this “proof” made an arithmetic error and their 
numbers are all wrong as a result. I once found over 1,000 web sites quoting the 
erroneous result! Sometimes a little slip on your calculator can have far reaching effects.) 

8. A space shuttle has a mass of 80,000 kg. What is the difference in the 
rotational kinetic energy that needs to be given to the shuttle if it is 
launched from a point on the equator or the north pole in order to get 
it into a circular orbit? Assume the height of the orbit is 700 km 
above the surface of the Earth. 

This is more tricky than difficult. The first thing you need to realize is that the speed 
of an object in orbit is determined exclusively by the height of the orbit. All orbits at a 
given height take the same amount of time. This can be seen from the solution to the 
Clarke orbit problem and the one on Kepler’s law. (I’ve caught some of you assuming 
that all orbits are “geosynchronous” like the Clarke orbit. This is not true!) As soon as we 
specify the height of the orbit, we have specified the gravitational acceleration. Since the 
gravitational acceleration is the centripetal acceleration, only one speed will allow an 
object to remain in orbit at a particular height. So the shuttle will have the same rotational 
kinetic energy once it gets into orbit regardless of whether it started at the pole or the 
equator. Any difference between the rotational kinetic energy needed to be given to the 
shuttle between the two launch locations is due to whatever differences in rotational 
kinetic energy they have while sitting on the ground. 

Now, an object at a pole has virtually no rotational kinetic energy. Its rotational 
radius (the distance from the rotational axis to the mass) is nearly zero compared to what 
it is at the equator. However, an object at the equator has a fair amount of rotational 
kinetic energy: It’s moving around in a circle with a radius of  (the 
radius of the Earth) once per day. So the shuttle’s rotational kinetic energy when sitting at 

the equator is 
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So, a space shuttle sitting at the equator already has 8.6 billion Joules of the energy 
it needs to get into orbit. Every little bit helps! This is one of the reasons why launch pads 
are placed as close to the equator as possible. 



9. It is frequently stated that astronauts are in “zero g” when in orbit 
around the Earth. What is the net force of gravity on a 80 kg 
astronaut in a 700 km orbit? Why does the astronaut float? 

It is crucial that you understand that gravity doesn’t get turned off! Neither does it 
get cancelled out. The gravitational force on astronauts in orbit is darn near the same as 
that which they experience at the surface of the Earth. To see this, let’s use the result we 
obtained for the acceleration at the Earth’s surface in problem #1: 
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Now, add 700 km to the radius. This gives 
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a change of about 19%. Now, multiply by his/her mass to find the astronaut’s weight: 

Newtons.9.63696.78096.7 22 =×=×=
s
mkg

s
mmW  Compare this to the 784 Newtons 

he/she would weigh on the surface of the Earth. 

So why do these people float? It’s because they have enough forward velocity that 
the acceleration toward the center of the Earth that they experience is simply sufficient to 
make their path curve. In fact, the forward velocity is carefully “tuned” so that their path 
just curves enough so that they move in a circle. (Actually, an ellipse, which may be quite 
eccentric. But we’ll neglect the extreme cases for now.) The key thing is that everything 
in orbit at the same height is moving at the same speed and accelerating at the same rate. 
(Reread that one a couple of times.) So everything from the shuttle itself to the astronaut 
to tiny specs of dust in orbit at that height are moving at the same speed and accelerating 
at the same rate—they’re all following the same path. So, although they might have very 
high speed and although they’re accelerating almost as much as they would if they 
jumped off a building on Earth, none of them is moving relative to each other! They all 
seem to float as though there were no gravity at all. 

Problems #10 and #11 have been moved to the next assignment. 
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