
PHYSICS 206a 
HOMEWORK #10 

SOLUTIONS 
(Problems #11, 12, and 13 have been moved to the next assignment.) 

 
3. Superman wants to stop the Earth from spinning. 

a. Assuming a constant angular acceleration, what torque would he 
have to exert on it to stop it in one hour? 

b. If he exerts the torque by pushing on a point on the equator, what 
force does he have to exert? 

c. Rather than pushing on a point on the equator, he pushes on a 
point in Edwardsville, IL. Now what force does he have to exert? 

Angular acceleration, by analogy to regular acceleration, is the change in angular 
velocity divided by the time in which that change occurs. Mathematically, this is written 

t
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= . For this problem, we’re unconcerned with the direction of the vectors, so let’s 

treat them as scalars for simplicity. This allows us to discuss “speed” instead of “velocity.” 
We’re going from the angular speed found in problem #9 of assignment #9 

(
st
110272.7

seconds86400
2 5−×==

∆
=

πθω ) to zero in one hour. So 
s
110272.7 5−×−=∆ω  

and we have 2
8

5

s
11002.2

3600

110272.7
−

−

×−=
×−

=
∆

=
s

s
t
ωα . This is the angular acceleration. 

Now, in the realm of rotating objects, torque serves in the same role as force does in 
the realm of moving objects: Torque is the thing that makes something start or stop rotating 
(or change the direction of its rotation). We have an analog for Newton’s second law in the 
rotating realm: Instead of amF vv

= , we have ατ vv I= . (There is always some confusion 
here: I seem to have given you two “formulas” for the torque, one in which it’s defined as a 
force times a moment arm and the other in which it’s defined as a moment of inertia times 
an angular acceleration. What gives? Well, this is part of the danger of seeing these 
mathematical expressions as “formulas” rather than as what they really are: Statements 
about the relationships between entities. The way I think of these two equations is that one 
[the one in which torque is expressed as a moment arm times a force] is a cause of the 
torque while the other [the one in which torque is related to a moment of inertia times an 
angular acceleration] is the effect of the torque. Break yourself of the habit of thinking of 
these mathematical expressions as formulas into which quantities are to be plugged and 
commence thinking of them as descriptions of relationships written in the language of 
mathematics and you’ll avoid a host of errors and open up a plethora of new insights!) 
We’ve just found the angular acceleration, so all that remains is to multiply this by the 
moment of inertia, I. 

The moment of inertia of an object is the analog of mass: Mass is a measure of how 
difficult it is to change the velocity an object. Moment of inertia is a measure of how 



difficult it is to change the angular velocity of an object. It is more complex than mass 
since it depends first of all on the mass of the object and also on the geometry of the object 
and the axis about which the object is rotated. A single object does not have a single 
moment of inertia since we can rotate the object about any axis we choose. (Note that while 
torque can be determined from any origin we choose, giving the same answer for any 
choice, moment of inertia demands a particular choice of axis. Each one will be different.) 
The moment of inertia of a single blob of mass m sitting a distance r from an axis of 
rotation is . But an extended object, which has its mass distributed, will be 

different. For a solid sphere rotating about its center, the moment of inertia is 
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(There is a table of such values in your text. On an exam, I will provide you with such a 
table. You need only memorize that the moment of inertia of a point mass a distance r from 
an axis is . Anything else, you can look up.) 2mrI =

If we assume the earth is a solid sphere of mass  and radius 
, we find its moment of inertia to be 
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the angular acceleration found previously (again, ignoring the direction of the vector and 
concentrating on its size only), we find the needed torque to be 
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Now, this links the torque to its effect. Let’s link it to its cause: The torque we just 
found is presumed to be the result of a force exerted at the Earth’s equator. We further 
assume that the force is exerted precisely perpendicular to the Earth’s radius (if it weren’t, 
we’d have to include the sine of some angle—all we care about is the component of the 
force that is perpendicular to the Earth’s radius). Taking  (I’ve seen 
different values given for this, don’t be too concerned if you used a slightly different 
number), we have 

metersr 61037.6 ×=

rF=τ . (Again, we’re ignoring the vector aspect very consciously. This 
is a risky thing, as you know! In this case, we can get away with it because we’re not 
concerned with the direction of the result and we’re assuming the force is perpendicular to 
the radius vector. Without these assumptions, we’d be making a horrible mistake by 
ignoring the vector nature of these quantities!) Using this, and the numbers found above, 
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To find the force needed at Edwardsville, we use the radius at our latitude, as in 
problem #9 of assignment #9. This amounts to simply dividing the number above by the 
cosine of 39°. This gives 
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Notice that Superman has to push harder to stop the Earth at Edwardsville than he did 
when pushing at the equator. This is for exactly the same reason as why it is easier to open 



a door by pushing on a knob far from the hinge than to open the same door by pushing 
close to the hinge. 

2. The propeller on an airplane has a diameter of 223 cm and a mass of 26.8 
kg. The desired rotation rate of the propeller is 2700 rpm. The engine 
provides a torque of mN ⋅= 550τ . How long does it take for the propeller 
to reach operating speed when the airplane’s engine is started? 
I intentionally didn’t tell you anything about the geometry of the propeller. There are a 

variety of ways you can visualize this. The easiest is to think of the propeller as a rod being 

rotated around its midpoint. The moment of inertia of such a rod is 2
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given the torque (the cause of the angular acceleration), so all we need is to find its effect. 

We have ατ I= . Recalling that 
t
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=  (again neglecting the vector aspect since we’re 

unconcerned with direction in this case), we see that we can write 
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propeller’s final rotation rate in revolutions per minute. We really need it to be in radians 
per second to be meaningful. Since there are π2  radians in each revolution and there are 

60 seconds in each minute, 
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Frankly, that’s a ridiculous number! I always try to give you realistic numbers on the 
problems I assign. I don’t know where the difficulty crept in, here: I used manufacturer 
specifications for all the numbers. I will do some more research on this to see where I may 
have provided an incorrect input. Nevertheless, the answer above is consistent with the 
inputs. Only the plausibility of the assumptions is in question. 

3. Two children sit on the ends of a see-saw. The distance between the 
children is 3 meters. Child “A” has a mass of 22 kg and child “B” has a 
mass of 31 kg. The pivot of the see-saw is halfway between them. They 
begin with child “B” in the air and child “A” on the ground. At this time, 
the see-saw makes an angle relative to the horizontal of 0.2 radians. What 
is the magnitude (size) of the net torque on the see-saw? 

This is just like problem #7 and 8 of the previous assignment, with a twist (pun 
intentional): Now the forces do not act perpendicular to the rod. Recall that the definition 
of torque is NOT distance times force. It is distance times force in a direction perpendicular 
to the vector connecting the origin (which we are free to choose) to the location where the 
force acts. That vector is called the “moment arm.” (We can also think of this as distance in 
a direction perpendicular to the force times the force—they’re equivalent statements. 
Personally, I find it much easier to visualize the distance as a fixed quantity and then to 
consider only the part of the force perpendicular to that distance.) So we must decompose 



our forces into components that are parallel to the moment arm and components that are 
perpendicular to the moment arm. Fortunately, this always gives us (treating only the size 
of the torque and ignoring its direction for now—we’ll deal with the direction in a little 
while) )sin(θτ dF= , where θ is the angle between the force and the moment arm. Our 
situation is pictured below. 

For the sake of symmetry, let’s pick the pivot as the origin for this problem. (As a 
variation, I recommend that you give it a shot with one of the children as the origin.) We 
can now look at the torques due to each of the two children individually. These are 
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Since the see-saw makes an angle of 0.2 radians with the horizontal, the angles are 
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should take advantage of it, however.) Inserting numbers, we get 
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Now, although we are neglecting direction in this, we cannot completely ignore it. 
Note that one of the torques found above should be positive and the other negative. It really 
doesn’t matter which one is which as long as we’re neglecting the direction of the net, but 
we might as well do it right. (The way to see that it must be this way is to note that both of 
the forces are pointed in the same direction. However, the vector from the origin [the pivot, 
in this case] to child “A” points in the opposite direction to the vector from the origin to 
child “B”. Thus the torques must have opposite signs.) Using the Right Hand Rule, as 
demonstrated in the solution to problem #1, we see that child “A”’s torque points out of the 
page while child “B”’s torque points into the page. Again using out of the page as positive, 
we get a final torque of 
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that the rotation induced by this torque will be clockwise. 
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4. A yoyo has a total mass of 185 grams and a radius of 6 cm. Consider the 
yoyo to be a perfect solid disk. The hub has a radius of 3 millimeters. The 
yoyo begins with its string completely wound around the hub. (Neglect 
the thickening of the hub due to the string.) When the string is held and 
the yoyo allowed to fall by “unwinding,” what total downward 
acceleration will the yoyo experience? (Hint: Determine the angular 
acceleration and then calculate the amount of string played out due to the 
rotation. Remember that linear acceleration and angular acceleration are 
related, in this case.) 

Sorry for all the arrows in the picture! We’ll need them, so try to keep them all 
straight in your mind. 

The first thing to realize in this problem is that, as implied by the hint, the 
downward acceleration is directly linked to the angular acceleration. This is because the 
yoyo goes down by unwinding string. The total amount of string that is unwound from 
the hub at any instant is a direct measure of how far the yoyo has traveled (we do need 
to assume that the string doesn’t slip around the hub; if we wanted to include that 
slippage, we’d need to add friction to the problem). So, if we find the rate at which the 
yoyo is spinning, we can determine how fast it’s falling. The yoyo experiences an 
angular acceleration which results in a linear acceleration (because of the string). The 
angular acceleration is caused by a net torque, so we must use the angular analog of 
Newton’s second law, ατ vv I= , to find the angular acceleration. 
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The next step is to remember that torque problems start out as force problems. 
(That’s an important sentence. Reread it.) To solve a torque problem, you should begin 
with a free-body diagram, just as you would with a force problem. The crucial 
difference is that with a force problem, it really doesn’t matter where you draw the 
arrows. With a torque problem, the size of the arrows, their directions, and their 
locations carry meaning, so you must be more careful. 

There are two forces acting in this problem: The tension on the string and the 
force of gravity. Newton’s second law didn’t stop being true all of a sudden: If we 
knew FT we’d be done with the problem right now. But we don’t know FT (it is not the 
same as the weight of the yoyo—if it were, the yoyo wouldn’t go down). All we know 
is the mass of the yoyo, so we’ll have to work with this. Since Fd

vvv ×=τ  and there are 
two forces but we only know one of them, we’d better put the origin at the place where 
one of the forces acts—this is the point where the string meets the hub. This means that 
the only force creating a non-zero torque is the one due to the weight of the yoyo. Since 
the two forces (the weight and the tension) point in exactly opposite directions (if they 
didn’t, the yoyo would accelerate away from the person holding it, not just up and 
down)  are perpendicular to each other and we can just multiply them without 
using the sin(θ) term. This gives 

Fd
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Time for a little review: Newton’s second law is a statement of cause and effect. 
In the rotational case, this is written ατ vv I=  with the cause being the torque and the 
effect being the angular acceleration. Try to think about it this way to avoid confusion. 
I’ve had many conversations with students who are dazed by the fact that we seem to 
have two equations for τ. The source of the confusion is linked to your desire for 
formulas. You see an equation that has a τ to the left of the “=” sign and you think “oh, 
that’s a formula for torque.” WRONG! Seeing it written that way simply means that it’s 
an equation involving torque. It can be turned into a formula for any of the quantities in 
the equation. The equation has meaning that you should seek to understand. Do not 
simply memorize and regurgitate these things or you’ll find yourself confused and in 
trouble! 

So, we’ve found the cause of the angular acceleration: grM=τ . The cause is 
linked to the effect by ατ I=  (once again just concerning ourselves with the size and 
ignoring the direction for now). These give grI M=α . This can be solved for the 

angular acceleration to give 
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place where the string meets the hub of the yoyo as the origin. We really should use the 
moment of inertia about that point. But that is beyond the level of this class. So we will 
just make the approximation that the moment of inertia of a disk rotated about a point 
close to the center is approximately the same as the moment of inertia of a disk. I’ll use 
a different technique at the end of this solution to show you what it looks like if we do 

it exactly. The moment of inertia of a disk rotated about its center is 2MR
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use this to find the total angular acceleration: 
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a disturbing fraction of you latching onto the FALSE definition 2MR
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for a solid disk or cylinder rotated about its axis. It is not true for all shapes! Be careful 
to use the correct moment of inertia for a particular situation.) 

If we express the angular acceleration in 2second
radians , we can write αra =  (notice 

which radius is being used—that of the hub, not the entire yoyou; make sure you 

understand why), so 
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Now for an alternate solution that will yield the exact answer, without 
approximating the moment of inertia. To do this we need to take the origin at the center 
of the yoyo—an axis for which the moment of inertia is well known exactly. This 
means we’re left with FT as an unknown. But all is not lost. From the torque equation, 

we have TFr=τ  and since αra =  (as we discussed above), we can write 
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we write the rotational form of Newtons second law ατ I=  and put these three pieces 

together to write 
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form) says , so we can solve for Fag MFM T =− T: ag MMFT −= . This can be 
substituted into our acceleration expression found from the torques to give 

2MM
r
aIag =− . A bit of algebra on this to solve for a gives 

⎟
⎠
⎞

⎜
⎝
⎛ +=+= 22 MMM

r
Iaa

r
aIg  which yields 

22

2

2

2

2

2
2

R
2
1R

2
1

1
MR

2
1

M

M

M

+
=

+

=

+

=
⎟
⎠
⎞

⎜
⎝
⎛ +

=
r

gr

r

g

r
M

g

r
I

ga . Notice that our two answers 

are, as we predicted, very similar. If r is very much less than R, the addition of an 2r  in 
the denominator makes insignificant difference. However, if r starts to get big enough 
that it’s a significant fraction of R, we’d better use this form. (Remember that our first 
answer was correct except for the fact that we used the wrong moment of inertia. If 
we’d used the accurate moment of inertia for a disk rotated around a point away from 

the center by a distance r, which is 22 MR
2
1M += rI , we would have gotten the 

precise answer using that method.) 

 



5. Consider again the yoyo described in the previous problem. Use 
conservation of energy to determine the angular speed of the yoyo after it 
has descended ½ meter. 

Energy is conserved in this problem. Thus we can write the condition for 
conservation of energy constantEKEP =+ .... . After the yoyo has descended by ½ meter 
its P.E. has decreased by ghEP M.. =∆ . Its K.E. must have increased by the same amount. 
But here there’s a difference between this problem and ones we’ve done before: The K.E. 
can go to two different places. It can go to the overall motion of the yoyo moving 
downward, called “translational kinetic energy,” or it can go into the spinning of the yoyo, 
called “rotational kinetic energy.” Do NOT presume that it goes into the two 50/50! We’ll 
need to think about how it’s distributed rather than just assuming that it’s divided up 
“fairly.” Fortunately for us, since the string requires that the downward motion is exactly 
related to the spinning, we can write these two down at the same time. Remembering that 

rv ω= , we can write down the translational kinetic energy as 
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Setting the change in potential energy equal to the sum of the two kinetic energies, we 

have 22
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this gives 
second
radians6.73=ω . 

If the hub’s radius is very much less than the disk’s radius, note that the vast majority 
of the energy is in the rotational part of this. We’d be justified in approximating the angular 

speed, in this case, by 2R
4gh

=ω . Again inserting the numbers, we get 
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Clearly the approximation is quite a good one—this answer varies from the one above by 
only about 0.3%. 

 

6. An ice skater whose mass is 55 kg is spinning at 11 radians per second. 
She can be approximated as a cylinder 50 cm in diameter. Someone 
throws a cat to her and the cat attaches itself to her with its sharp claws 
(neglect the speed with which the cat is thrown). The mass of the cat is 7 
kg. What will her angular speed be with the cat attached? 

It is very important that you recognize the basic form of this problem: This is just 
another inelastic collision (the cat sticks, whenever something sticks, it’s inelastic) and so is 
essentially identical to the other inelastic collision problems that you’ve done—like the 
carts in lab. In those cases, we were only concerned with “regular” (i.e., linear) momentum. 
Here, we’re only concerned with angular momentum. Linear momentum and angular 
momentum are conserved independently, so you could also solve this problem for the 
skater’s new linear momentum if I’d given you the velocity of the cat. You could do this 



using precisely the same methods as you’ve done previously. In this case, we just need to 
worry about angular momentum, however. 

Angular momentum is conserved always. Just as in the linear case, we have 
. The addition of the cat to the spinning skater changes her moment of inertia. 

Therefore, her angular speed must change in order for her angular momentum to remain 
unchanged. (If we hadn’t neglected the thrown speed of the cat, this would not necessarily 
be true. We’d have to allow for the cat’s angular momentum as well.) 
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The size of the initial angular momentum of the skater is ωIL = . If we treat her as a 

cylinder, here moment of inertia is given by 2
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momentum of the system as well. 

We are now left with a bit of a judgment call to make: What shall we use for her 
moment of inertia once the cat attaches itself to her? The cat is a single mass which is 
attached at a distance r from the skater’s axis. The moment of inertia of the cat, therefore, 
is . I think the best technique would be to add this moment of inertia to that of 
the skater. However, an alternative method, which is also valid (although I find it a bit less 
justifiable) would be simply to consider the cat to be part of the skater and just use 

2rMI catcat =

2

2
1 MrI =  but for the mass use the sum of the two masses—skater and cat. I’ll go ahead 

and use the method I prefer, but if you used the other one, it’s alright. (This is the sort of 
thing that simply must be communicated in a problem’s solution. We can quibble about 
how valid an approximation is, but we really should all agree on what approximation has 
been used.) 

This gives 22
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7. Two men are standing on a merry-go-round which is turning at a constant 
angular speed, ω. One man is standing very near the center of the merry-
go-round, the other is standing very near the edge. The man at the center 
is trying to throw a baseball directly to his friend at the edge but for some 
reason the ball always winds up very far from its intended target. Please 
explain the mistake the man at the center is making. (This is an example 
of the "coriolis" effect.) 

Both men are standing on a rotating object. They very naturally (it’s really the way 
humans are put together) perceive the merry-go-round to be a good frame of reference. 
That is, since they are not moving relative to the merry-go-round, they think of the merry-
go-round as being motionless, even though they know it’s spinning around. Further, even 
when their intellect overcomes their intuition sufficiently to convince them that they’re 
moving, they still don’t recognize that they are accelerating. Any object forced to move in 
anything other than a straight path must accelerate! Thus, their reference frame is non-
inertial. 

When the man at the center throws the ball to his friend, he doesn’t allow for the fact 
that his friend has a different velocity than he does. The man at the edge is moving faster 
than the man at the center—even though they have the same angular speed. The ball, when 
thrown, will have whatever velocity the man at the center gives it. As seen by an observer 
in an inertial reference frame, the ball will have that velocity plus whatever velocity the 
man at the center has (relative to the inertial frame). But the man at the edge will have a 
different velocity. If the men presume their reference frame to be inertial, it will appear that 
the ball has some extra velocity not given to it by the thrower. Since the only thing that can 
change a velocity is a force, the men will come to the conclusion that there is some force 
that acts on the ball after it is thrown. In reality, no such force exists. It is fictitious. 

Notice that the coriolis force acts “tangentially”—i.e., in a direction tangent to the 
rotation. This is perpendicular to another fictitious force that we’ve studied, the 
“centrifugal” force, which acts “radially”—i.e., along the radius of the circle. Don’t 
confuse the two! 

The coriolis force is very important in weather: As air travels from one latitude to 
another, the ground has a different speed. This results in air moving relative to the ground 
until it gets accelerated to the same speed as the ground. This is a major cause of wind and 
is the reason that things like hurricanes rotate. 



8. Consider again the situation in problem #7. The angular speed of the 

merry-go-round is 0
second
radian1.  and it is 12 meters in diameter. The baseball 

is thrown with a velocity in the  direction of x̂
second
meters13  (i.e., ignore the  

component of the velocity). How far (measured along an arc) from the 
catcher does the ball wind up? 

ŷ

Let’s assume the merry-go-round is spinning counter-clockwise as seen from above. 
(The answer will be the same which ever way you take the rotation since I only asked for 
the distance from the catcher the ball winds up, not the direction.) This is shown in the 
figure. Now, take the “god’s eye view”—look down on the rotating merry-go-round from 
the perspective of a fixed observer in an inertial reference frame directly above the center 
of the merry-go-round. This isn’t essential, but it makes life easier. From this perspective, 
the ball will be thrown with a velocity vv  and will keep this velocity through the entire 
problem—it will not change since there is no real force acting on it after it is thrown. 
However, in the time that it takes for the ball to make it from the center of the merry-go-
round to its edge, the catcher will have moved some angle θ from his starting point. 

To figure out what θ is, we first realize that we know how θ changes with time. The 

angular speed of the merry-go-round is just 
t
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= . This is just like our “regular” speed 

except with “angle” replacing “distance”. We read this as “the change in angle divided by 
the time it takes to make the change.” So, we can conclude that tωθ =  (taking our initial 
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angle to be zero). Now all we need to do is find the time that it takes for the ball to reach 
the edge of the merry-go-round. 

Since the time that it takes for the ball to reach the edge of the merry-go-round 
doesn’t depend on the angular speed (note that this is because of the high level of 
symmetry in a circle; imagine an elliptical merry-go-round, or some other shape, then the 
problem would require more work!), all we need to do is realize that the speed (that is, the 
“regular” speed, not the angular speed) is just the distance traveled divided by the time it 
takes to travel that distance. In this case, the distance traveled is the radius of the circle, r. 

We have 
v
rt = . Substituting numbers, this gives seconds46.0

second
meters13

meters6
==t . 

Now we use this with our angular speed to find the angle 

radians.0460seconds46.0
second
radian1.0 =×== tωθ . But wait, we’re not done yet. The 

problem asked how far from the catcher the ball winds up. That is, it asks for the distance. 
This is indicated on the figure as “L.” (I am sorry that we are using the same letter, L, to 
indicate both the arc length and the angular momentum. This sort of thing is maddeningly 
confusing, but inevitable. There are just too many concepts to reserve a letter for each of 
them!) Here’s where using radians to measure angles really comes in handy: By definition, 

if we measure our angle in radians, we have 
r
L

≡θ . Thus 

meters.2760meters6rad046.0L =×== rθ . 

(Some folks who are new to radians will feel uncomfortable with the fact that this 
unit seems to have magically vanished from the answer above. In some sense, this is 
because it was never really there. Recall the definition of an angle measured in radians 

r
L

≡θ . Note that the numerator and the denominator both have the same units. So θ never 

really had a unit. By saying the angle is measured in “radians” we keep track of how the 
number was created, but there’s not really a unit there. I know this is confusing. This is one 
place where I’ll just say to memorize the fact that this is so without wasting too much time 
on understanding why it is. There won’t be too many other cases like this.) 

 



9. Yet again, consider the merry-go-round of problem #7. The catcher 
perceives that a force is acting on the ball to skew its path. This is a 
“fictitious force.” What size force would be needed to cause the motion 
observed by the catcher if it were real? 

As is so often the case, there’s a hard way to do this and an easy way. I knew that 
when I wrote the problem. What I lost track of, however, was just how hard the hard way is 
if you don’t know calculus—far too hard for this course. (Try to remember what it was like 
before you could read. It’s difficult to remember, isn’t it? That’s the way it gets with Math 
also: Sometimes it’s hard to keep hold of the fact that I wasn’t born knowing calculus.) So 
don’t feel too bad if you missed it. I’m perfectly happy with the easy answer. But the hard 
way is instructional, however, so I’m not sorry I threw it at you. I just should have given 
you adequate warning first. The hard way is much more informative than the easy way, so 
I’ll do it that way first. Then, I’ll make you slap your head in frustration by showing you 
how easily it can really be done. I’ll also include the method using calculus, for those of 
you who have that skill. 

Hard way: You must recognize that the ball moves in a straight line at a constant 
speed (as required by Newton’s first law) for its entire trip as seen by an observer in an 
inertial reference frame. This line is along a radius of the merry-go-round, so let’s call this 
speed . Also, the merry-go-round moves at a constant angular speed for that entire 
trip. But, as the ball moves out from the center of the merry-go-round, the speed (not 
angular) of the merry-go-round increases steadily. Since regions of the merry-go-round that 
are different distances from its center sweep out larger distances in a given amount of time. 

This can be seen from the definition of angle 

radialv

r
L

≡θ . If we take θ to be the angle swept out 

in some small interval of time, as r increases, L must also increase to keep θ constant (as it 
must be since the angular speed is constant). Note that this speed is in a direction 
perpendicular to . radialv

Now, let’s come up with a strategy for solving this problem: We want an acceleration. 
(We actually want a force, but since we know Newton’s second law, we realize that if we 
can find the acceleration, we’ll have also found the force.) We know that acceleration is the 
change in velocity divided by the time over which that change occurs. We also know that 
velocity is the change in the displacement vector divided by the time over which that 
change occurs. So, if we can find the displacement as a function of time, we can divide by 
time to find velocity and then divide that by time to find acceleration. Let’s do it. 

Now, we can define an angle in terms of the radius and the arc length it subtends: 

r
L

≡θ . Also, the angular speed is the angle swept out in some interval of time: 
t
θω ∆

= . 

Putting these together, we can write 
rtt

r
t

L
L

==
∆

=
θω . (You may be troubled that I 

blithely go between θ and ∆θ. I can do this by simply taking the angle at the beginning to 
be zero. Recall that the change in some quantity is its value at the end minus its value at the 



beginning. So, θθ =∆  if 0=beginningθ . This is convenient, but be careful to use it only 
when it is true!) Now, figure out what L is as a function of time: rtω=L . 

We’re almost there. Now, to find the speed (we’re now working in one dimension, so 

we can drop the vector language), we divide this by t to get r
t

v ω==
L . Please be careful: 

Here r is not the total radius of the merry-go-round but simply the distance from the center 
at which the ball happens to be at some time. If that time happens to be the time at which 
the ball is at the edge of the merry-go-round, then r is the full radius. 

Now, we find the acceleration of the ball. We make the assumption (if you know a bit 
of calculus you can prove that this is true; if you don’t, you’ll just have to take my word for 
it) that the acceleration is constant in this problem. Thus we can use the definition of 

acceleration (in one dimension) 
t
vv

t
va beginend −

=
∆

= . Remember: We’re not talking about 

the speed of the ball as it goes from the center of the merry-go-round to its edge. All 
observers agree that the ball is not accelerating in that direction. We’re talking about the 

acceleration perpendicular to this. In that direction, vbegin=0, so we can just write 
t
ra ω

= . 

We’re almost there. Notice that we can rewrite the above equation as 
t
r

t
ra ωω

== . But 
t
r  

is precisely the initial speed of the ball— ! So we can write radialv radialva ω= . Inserting 

some numbers, this gives 2second
meters3.1

second
meters13

second
radian1. =×=a . Multiply this by the 

mass of the ball to find the fictitious force. 

But wait, we’re not done yet! I pulled a sleight of hand on you. I only included the 
change in the ball’s speed (in the non-inertial frame) in calculating the acceleration. 
Remember: Acceleration can be a change in the direction of the velocity in addition to (or 
instead of) a change in its size! So far, we’ve only calculated the change in the size of the 
velocity as seen by the catcher. He also sees a change in the direction of the velocity: The 
ball begins headed directly toward him, but at the end, it is shooting off in some other 
direction. The math here gets way beyond this course, but the result is a factor of 2 applied 

to the expression above. So the final answer is 2second
meters6.2=a , but I wouldn’t expect 

anyone in the class to get the extra factor of 2. 

(Anyone who hasn’t had calculus, don’t read this paragraph! For those of you 
who have had calculus, it goes like this: Start with tvtr radial=)(  and tt ωθ =)( . These are 
the sizes of the components of the position vector in a circular coordinate system as a 
function of time. The deviation of the ball’s position as a function of time will lie in the  
direction and will be . We take the derivative of this with respect 

to time to find the velocity in the  direction. This is 

θ̂
2)()()( tvttrtL radialωθ ==

θ̂ tv
dt

tdLv radialωθ 2)(
== . Now, we take 



the derivative with respect to time of the velocity to find the acceleration. This is 

ωθ
radialv

dt
dv

a 2== . Man, does calculus make life easier!) 

Easy way: That was pretty tough, huh? Especially that “magical” factor of 2! Let’s 
do it the easy way: Again recognizing that the acceleration is in the direction perpendicular 
to , we note the solution found in the previous problem: The distance traveled due to 
this force (in the non-inertial frame) is 0.276 meters. We also know how long it took for 
this distance to be traveled: 0.46 seconds. Thus, we can write 

radialv

2
2
1L at=  and solve this for 

the acceleration. This gives 2

L2
t

a = . Plugging in the numbers above, we have 

222 second
meters6.2

seconds)(.46
meters276.2L2

=
×

==
t

a . Yup, it’s that easy! 

10. What is the “orbital angular momentum” of the Earth? That is, the angular 
momentum due to the Earth revolving around the sun. 

There are two ways to do this (isn’t that a shock?). They’re actually identical, but 
they don’t look that way unless you recall where the equations you’re using came from. 
The definition of angular momentum is prL vvv

×=  where rv  is the position vector of an 
object and pv  is its (regular) momentum. When we work this out and allow for the fact 
that objects frequently don’t come as isolated blobs of matter but are often extended, 
with some structure, we get a variation which is ωv

v
IL = . (Reread that last sentence a 

couple of times until you are clear on what it is saying: The two equations are the same. 
One simply takes into account all the component masses that make up an object while 
the other is the angular momentum of just one of those component masses.) If we treat 
the Earth going around the sun as an isolated blob of matter moving with some angular 
speed ω , we get (considering only the size of the vectors—we can neglect the vector 
cross product because the velocity vector and the position vector are perpendicular to 
each other to a very good approximation) , where I’ve used the 
fact that 

ω2mrrmvrpL ===
rv ω= . (If this final relation isn’t like second nature to you by now, 

concentrate on it! It is a very important piece of geometry.) Well, the moment of inertia 
of an isolated mass a distance r from the axis of rotation is , so we’ve really 
just written 

2mrI =
ωIL = . I’ll use this form since it’s more convenient in this case. 

The Earth goes around the sun one time per year. Assuming that the distance from 
the Earth to the sun and the angular speed both remain constant (and Kepler’s first and 
second laws say that this is not true, although it is a very good approximation), we can 
find the angular speed easily. The Earth travels an angle of 2π radians in one year, 
which is  This gives an angular speed of seconds.10156.3 7×

st
11099.1

seconds10156.3
2 7

7
−×=

×
=

∆
=

πθω . 



The mean distance between the Earth and the sun is  and the 
Earth’s mass is , so the Earth’s moment of inertia about a rotational axis 
at the sun is 

meters10521.1 11×
kg241098.5 ×

( ) 247211242 meterskilogram1038.1meters10521.11098.5 ⋅×=×××== kgmrI . 

Putting these two results together, we get 

s
mkg

s
mkgIL

2
407247 1075.211099.11038.1 ⋅

×=××⋅×== −ω . Now that’s a big 

number! 
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