Basic Problem Solving Strategy

1. Determine the problem to be solved. I.e., read the question and think about what is going on.
$>$ Try to visualize what is happening. The mental picture you form will guide your solution but do not hold to it religiously--this is a preliminary visualization and you must be prepared to revise it or to abandon it later as your analysis deepens.
$>$ Is this too big to deal with in one step? If so, think about how to break it up into smaller pieces.
> Don't be too concerned if a full strategy isn't immediately obvious. Just start breaking off pieces and solving them. Sooner or later you'll notice that you are homing in on a solution.

2. Draw a picture.

$>$ Don't obsess on this - a rough sketch goes a very long way.

3. Determine the Physics at work

> For much of this course, we will deal with forces, but you should be prepared for other scenarios
4. If the problem involves forces, draw a free body diagram.
$>$ This can go on your sketch or beside it.
> Be very critical of yourself in this step-this is where false Physics can creep in!
> Caution: Make sure the forces you include are forces and not velocities, accelerations, momenta, or other non-force quantities.
> Caution: Make sure the forces you include are acting on the object under consideration and not on something else, e.g., not reaction forces.
$>$ Be sure you get everything but don't double-count.
> Here is where you pick a coordinate system - choose the one that will make your life easiest, this is usually one in which one axis is parallel to an expected acceleration direction.

5. Decompose vectors

> Sometimes this step is not relevant. E.g., in some circular motion situations. But you should still have a picture of the directions of the motions and forces.
6. Determine what sort of tools you will need
> Deal with orthogonal dimensions independently, you'll recombine them later.
$>$ Here is where the crucial thinking happens. Decide what kind of motion or behavior you are dealing with.

7. Go to the toolchest

$>\quad$ You have built up a set of mathematical tools, now is the time to dip into it-here is where you dig out the equations that you will use.
$>$ Base your choice of tool on what quantities you know, but don't reject a tool just because you don't know some feature-often, these either divide out, are found elsewhere in the problem, or appear in a ratio which has value. If there's some quantity you don't know, pause and see if solving a sub-problem might give it to you.
$>$ Don't be afraid to assign a "name" (an unused symbol) to a quantity for which you don't yet know a value.
$>$ Be critical of your choices-don't choose blindly based on what symbols are present. Often, the same symbol is used for many different concepts leading to hilarious results (for the guy doing the grading).
$>$ Each direction provides a separate equation. Finding a solution may involve combining orthogonal directions here.
8. Set up the equations
> DO NOT USE NUMBERS YET!!!!!!!!!!!!!!!!!
> DO NOT USE NUMBERS YET!!!!!!!!!!!!!!!!
> DO NOT USE NUMBERS YET!!!!!!!!!!!!!!!!!
> DO NOT USE NUMBERS YET!!!!!!!!!!!!!!!!
$>$ Use subscripts and superscripts to keep things clear.
> Do dimensional analyses regularly

9. Do the math

> Make sure that you are solving for the right thing DO NOT USE NUMBERS YET!!!!!!!!!!!!!!!!

10. Think about your answer

> Consider the behavior of your result; does it make sense?
> How does your result behave in extreme limits (you can use simple numbers for this part)? Often, you have an intuition about limiting behavior even if you don't know specifics.
$>$ If things don't make sense here, doublecheck your math.
11. Now you can plug in numbers, if you really want to
> Depending on the problem, orthogonal components can be considered separately or together at this stage if they weren't combined previously.
> Graphs are good!

