1. Previously this semester, we solved the problem of a "loop the loop" in which we determined the minimum release height for an object to make it around a loop of radius R. In that, we neglected the rotational kinetic energy of the object. Repeat the derivation but assume the object is a ball of mass m and radius r.
2. A star with a radius of $7 \times 10^{5} \mathrm{~km}$ collapses into a neutron star with a radius of 16 km . The original star had a rotational period of 30 days. What is the rotational period of the neutron star?
3. A Canada goose with a mass of 7 kg is flying at a speed of $5 \mathrm{~m} / \mathrm{s}$. It smacks into one of the blades of a wind turbine, which kills it instantly, resulting in goose goo becoming stuck to the blade. The turbine can be considered to be a solid disk with a diameter of 3 m and a mass of 13 kg . It original angular speed was $5 \mathrm{rad} / \mathrm{s}$. By how much will the rotational speed of the blade be changed by the impact? (Hint: This problem is intentionally ambiguous in a key feature.)
4. A bear with a mass of 147 kg stands on a frozen pond. He can be considered to be a cylinder with a radius of 30 cm . A wolverine leaps out of the surrounding woods and strikes the bear and hangs on with his sharp claws. The wolverine's mass is 17 kg and its initial speed is $7.1 \mathrm{~m} / \mathrm{s}$ prior to striking the bear. What is the rotational speed of the bear after the impact?
