Physics 206b

Homework Assignment V September 21, 2007

1. Recall that the definition of the dipole moment p is $p \equiv Q d$. This is obtained by having a charge of $+Q$ and a charge of $-Q$ separated by a distance d. (Note that in chemistry the dipole moment is called μ.) A molecule of sodium chloride has a dipole moment of 3×10^{-29} Coulomb -meters. Consider the charges giving rise to the dipole moment of this molecule to be the charge on the proton and electron, respectively.
a. If the axis (the line connecting the two atoms) of such a molecule makes an angle of 1.1 radians with respect to an electric field of $\vec{E}=1 \times 10^{5} \frac{\text { Volts }}{\text { meter }} \hat{x}$, as shown, what is the total torque on the molecule?
b. What is the angular acceleration of such a molecule in such a field at the stated angle?

2. A proton in a constant electric field of $\vec{E}=1 \times 10^{5} \frac{\text { Volts }}{\text { meter }} \hat{x}$ is moved 3 cm at an angle of .9 radians relative to the field, as shown. How much work is done in the motion?

3. An electron is released from rest very far away from a proton whose position is fixed. When the electron is 1 mm away from the proton, what is its speed?
4. Electrons in the "gun" of a television set are thermionically emitted from a filament. They are accelerated through a potential difference of 4 kV . Neglecting their initial speed, what speed will the electrons have after the acceleration?
5. Two charges lie on the x axis, as shown. The one on the right is -0.9 C and the one on the left is 0.7 C . They are separated by 37 cm . What is the electric potential at the following points:
a. $\quad 10 \mathrm{~cm}$ to the right of the charge on the right?
b. 10 cm to the left of the charge on the left?
c. The point on the x axis midway between the two charges?
d. The point 12 cm in the \hat{y} direction directly "above" the midpoint between the charges?
\square

6 . Three charges are in the configuration shown below.
a. What is the potential energy strored in the configuration?
b. How much work would be required to move a charge of .3 C to the position marked "x" from a large distance away?
c. Assume the .3 C charge has a mass of 5 grams. With what speed would it have to be thrown to get it to the position marked " x " if thrown from a large distance away?

7. Calculate the total capacitance of a pair of parallel plates separated by air. Consider the plates to be circular with a radius of 1 cm . Take the separation between them to be $1 / 2 \mathrm{~mm}$.
8. What is the maximum charge that could be put on the above capacitor if the dielectric strength of air is $3 \frac{\mathrm{kV}}{\mathrm{mm}}$?
9. Now, the gap in the capacitor above is filled with paper (see table 19.1 in your text), which has a dielectric strength of $8 \frac{\mathrm{kV}}{\mathrm{mm}}$. What is the maximum charge that could be put on the capacitor in this case? What voltage difference would that require?

