Using CORDIC methods for computation in micro-controllers

Introduction

Many times in designing software for a micro-controller system, it is necessary to make calculations that involve elementary functions such as Sin(x), Cos(x) or Log_{10}(x). For example, many temperature sensors are logarithmic in nature. That is the sensor output voltage may increase by x volts each time the temperature doubles. In this case converting the sensor voltage to a linear temperature scale requires the calculation of 2^x.

Calculation of an elementary function is often times done by using a look-up table. Look-up tables are by far the fastest way to make the computation, however the precision of the result is directly related to size of the look-up table. High precision look-up tables require a large amount of non-volatile memory to store the table. If the table size is reduced to save memory, precision will also be reduced.

Power series may also be used to calculate these same functions without using look-up tables, however these calculations have the disadvantage of being slow to converge to a desired precision. In effect, the look-up table size is being traded at the expense of computation time.

CORDIC methods of computation represent a compromise between the two methods described above. The CORDIC technique uses a one-bit-at-a-time approach to make computations to an arbitrary precision. In the process, relatively small look-up tables are used for constants necessary for the algorithm. Typically these tables require only one to two entries per bit of precision. CORDIC algorithms also use only right shifts and additions, minimizing the computation time.

Fundamentals of CORDIC algorithms

All CORDIC algorithms are based on the fact that any number may be represented by an appropriate alternating series. For example an approximate value for e may be represented as follows:

\[e = 3 - 0.3 + 0.02 - 0.002 + 0.0003 = 2.7183 \]
Notice that in this case each digit gives an additional power of ten resolution to the approximation of the value for e. Also if the series is truncated to a certain number of terms, the resulting value will be the same as the value obtained by rounding the true value of e to that number of digits. In general the series obtained for a value by this method does not always alternate regularly. The series for π is an example:

\[
\pi = 3 + 0.1 + 0.04 + 0.002 - 0.0004 -0.00001 = 3.14159
\]

It may also be shown that the series for e is also irregular if the expansion is continued for a few additional terms.

The CORDIC technique uses a similar method of computation. A value to be computed, such as SIN(x) or Log\textsubscript{10}(x), is considered to be a truncated series in the following format:

\[
z = \text{Log}_{10}(x) = \sum_{i=1}^{B} a_i * 2^{-i}
\]

In this case the values for \(a_i\) are either 0 or 1 and represent bits in the binary representation of z. The value for z is determined one bit at a time by looking at the previously calculated value for z, which is correct to \(i-1\) bits. If this estimate of z is too low, we correct the current estimate by adding a correction factor, obtained from a look-up table, to the current value of z. If the current estimate of z is too high, we subtract a correction factor, also from the look-up table. Depending on whether we add or subtract from the current value of z, the \(i^{th}\) bit will be set to the correct value of 0 or 1. The less significant bits from \(i+1\) to \(B\) may change during this process because the estimate for z is only accurate to \(i\) bits.

Because of the trigonometric relationship between the SIN(x) and COS(x) functions, it is often possible to calculate both of these values simultaneously. If the COS(x) is considered as a projection onto the x axis and SIN(x) as a projection onto the y axis, it is seen that the iteration process amounts to the rotation of an initial vector. It is from this vector rotation that the CORDIC algorithm derives its name: COordinate Rotation DIgital Computer.
Algorithms for Multiplication and Division

A CORDIC algorithm for Multiplication may be derived by using a series representation for x as follows:

$$z = x \times y$$

$$= y \times \sum_{i=1}^{B} a_i \times 2^{-i}$$

$$= \sum_{i=1}^{B} y \times a_i \times 2^{-i}$$

$$= \sum_{i=1}^{B} a_i \times (y \times 2^{-i})$$

From this it is seen that z is composed of shifted versions of y. The unknown coefficients, a_i, may be found by driving x to zero one bit at a time. If the i^{th} bit of x is non-zero, y_i is right shifted by i bits and added to the current value of z. The i^{th} bit is then removed from x by subtracting 2^{-i} from x. If x is negative, the i^{th} bit in the twos complement format would be removed by adding 2^{-i}. In either case, when x has been driven to zero all bits have been examined and z contains the signed product of x and y correct to B bits.

This algorithm is similar to the standard shift and add multiplication algorithm except for two important features. First, arithmetic right shifts are used instead of left shifts, allowing signed numbers to be used. Secondly, computing the product to B bits with the CORDIC algorithm is equivalent to rounding the result of the standard algorithm to the most significant B bits. The final algorithm is as follows:

```plaintext
multiply(x,y){
    for (i=1; i<R; i++){
        if (x > 0)
            x = x - 2(^{-i})
    }
}```
\[ z = z + y \cdot 2^{-i} \]
else
\[ x = x + 2^{-i} \]
\[ z = z - y \cdot 2^{-i} \]
\}
return(z)
}

This calculation assumes that both \( x \) and \( y \) are fractional ranging from -1 to 1. The algorithm is valid for other ranges as long as the decimal point is allowed to float. With a few extensions, this algorithm would work well with floating point data.

A CORDIC division algorithm is based on re-writing the equation \( z = x/y \) into the form \( x - y \cdot z = 0 \). If \( z \) is expanded into its series representation, the second version of the equation takes the following form:

\[ x - y \cdot \sum_{i=1}^{n} a_i \cdot 2^{-i} = 0 \]

Which, after some manipulation, yields:

\[ x - \sum_{i=1}^{B} a_i \cdot (y \cdot 2^{-i}) = 0 \]

This final form of the equation shows that the quotient \( z \) may be estimated one bit at a time by driving \( x \) to zero using right shifted versions of \( y \). If the current residual is positive, the \( i \)th bit in \( z \) is set. Likewise if the residual is negative the \( i \)th bit in \( z \) is cleared.

\[
\text{divide}(x,y)\{
\text{for (i=1; i<R; i++)}\{
\text{if (x > 0)}\{
\text{x = x - y*2^{-i});}
\text{z = z + 2^{-i});}
\text{else}\{
\text{x = x + y*2^{-i});}
\}}
\}
The convergence of this division algorithm is a bit trickier than the multiplication algorithm. While x may be either positive or negative, the value for y is assumed to be positive. As a result, the division algorithm is only valid in two quadrants. Also, if the initial value for y is less than the initial value for x it will be impossible to drive the residual to zero. This means that initial y value must always be greater than x, resulting in domain of 0 < z < 1. The algorithm may be modified as follows for four quadrant division with -1 < z < 1:

```
divide_4q(x,y){
 for (i=1; i<R; i++) {
 if (x > 0)
 if (y > 0)
 x = x - y*2^(-i);
 z = z + 2^(-i);
 else
 x = x + y*2^(-i);
 z = z - 2^(-i);
 else
 if (y > 0)
 x = x + y*2^(-i);
 z = z - 2^(-i);
 else
 x = x - y*2^(-i);
 z = z + 2^(-i);
 }
 return(z)
}
```

As with all division algorithms, the case where y is zero should be trapped as an exception. Once again, a few extensions would allow this algorithm to work well with floating point data.
Algorithms for $\log_{10}(x)$ and $10^x$

To calculate the base 10 logarithm of a value $x$, it is convenient to use the following identity:

$$\log_{10}(x \prod_{i=1}^{B} b_i) = \log_{10}(x) + \sum_{i=1}^{B} \log_{10}(b_i)$$

If the $b_i$ are chosen such that $x \cdot b_1 \cdot b_2 \cdot b_3 \ldots \cdot b_B = 1$, we see that the left hand side reduces to $\log_{10}(1)$ which is 0. With these choices for $b_i$, we are left with the following equation for $\log_{10}(x)$:

$$\log_{10}(x) = -\sum_{i=1}^{B} \log_{10}(b_i)$$

Since quantities for $\log_{10}(b_i)$ may be stored in a look-up table, the base 10 logarithm of $x$ may be calculated by summing selected entries from the table.

The trick now is to choose the correct $b_i$ such that we drive the product of $x$ and all of the $b_i$ to 1. This may be accomplished by examining the current product. If the current product is less than 1, we choose co-efficient $b_i$ such that $b_i$ is greater than 1. On the other hand, if the current product is greater than 1 the coefficient should be chosen such that its value is less than one. An additional constraint is that the $b_i$ should be chosen such that multiplication by any of the $b_i$ is accomplished by a shift and add operation. Two coefficients which have the desired properties are:

$$b_i = 1 + 2^{-i} \text{ if } x \cdot b_1 \cdot b_2 \ldots b_{i-1} < 1$$

and

$$b_i = 1 - 2^{-i} \text{ if } x \cdot b_1 \cdot b_2 \ldots b_{i-1} > 1$$

In choosing these values for the $b_i$, it is seen that the limit as $i$ approaches infinity of the product of $x$ and the $b_i$'s will be 1 as long as $x$ is in the range:
\[
\left( \prod_{i=1}^{B} (1+2^{-i}) \right)^{-1} < x < \left( \prod_{i=1}^{B} (1-2^{-i}) \right)^{-1}
\]

This represents the range of convergence for this algorithm which may be calculated as approximately:

\[0.4194 < x < 3.4627\]

If it is wished to calculate logarithms outside of this range, the input must be either pre-scaled or the range of the \( i \) values must be changed. The final algorithm becomes:

```plaintext
log10(x)
{
 z = 0;
 for (i=1; i=<B; i++) {
 if (x > 1)
 x = x - x*2^(-i);
 else
 x = x + x*2^(-i);
 z = z - log10(1-2^(-i));
 }
 return(z)
}
```

To calculate the inverse of this algorithm, or \( 10^x \), it is only necessary to modify the existing algorithm such that \( x \) is driven to zero while \( z \) is multiplied by the successive coefficients, \( b_i \). This follows from the fact that if \( z = 10^x \) then:

\[z = b_i \times 10^{(x - \log_{10}(b_i))}\]

As the exponent is driven to zero, \( z \) is seen to approach the product of all the successive coefficients, \( \prod_{i=1}^{B} b_i \). The final algorithm becomes:
10_to_power(x){
    z = 1;
    for ( i=1; i<B; i++ ){
        if (x > 0)
            x = x - log10(1+2^(-i));
            z = z + z*2^(-i);
        else
            x = x - log10(1-2^(-i));
            z = z - z*2^(-i);
    }
    return(z)
}

The range of convergence for this algorithm is determined by the range for which x can be driven to zero. By inspection of the algorithm this is determined to be:

\[
\sum_{i=1}^{B} \log_{10}(1-2^{-i}) < x < \sum_{i=1}^{B} \log_{10}(1+2^{-i})
\]

or x is limited to the range -0.5393 < x < 0.3772. As in the previous algorithm, the range my be extended by scaling the initial value of z by (1+2^i) or (1-2^i).

The Circular Functions SIN(x) and COS(x)

It is well known that the rotation matrix

\[
R(a) = \begin{bmatrix} \cos a & -\sin a \\ \sin a & \cos a \end{bmatrix}
\]

will rotate a vector, \([x_0\ y_0]\), counter-clockwise by a radians in two dimensional space. If this rotation matrix is applied to the initial vector \([1\ 0]\) the result
will be a vector with co-ordinates of \[
\begin{bmatrix}
\cos a \\
\sin a
\end{bmatrix}.
\]
It is easily seen that the CORDIC method could be applied to calculate the functions \(\sin(x)\) and \(\cos(x)\) by applying successive rotations to the initial vector \[
\begin{bmatrix}
1 \\
0
\end{bmatrix}
\] and gradually driving the angle \(a\) to zero.

A problem arises when an attempt is made to set up the rotation matrix such that all rotations are accomplished by right shifts. Notice that if \(a_i\) is chosen such that \(\cos(a_i) = 2^{-i}\), the \(\sin(a_i)\) is not necessarily a power of 2. It is not possible to choose the successive angle rotations, \(a_i\), such that both the \(\cos(a_i)\) and \(\sin(a_i)\) amount to right shifts.

In working around this problem, it is possible to modify the rotation matrix by bringing a \(\cos(a)\) term out of the matrix. Then:

\[
R(a_i) = \cos(a_i) \cdot \begin{bmatrix}
1 & -\tan(a_i) \\
\tan(a_i) & 1
\end{bmatrix}
\]

Now the rotation angles \(a_i\) may be chosen such that \(\tan(a_i) = 2^{-i}\) or rather \(a_i = \tan^{-1}(2^{-i})\). The result is the final incremental rotation matrix:

\[
R(a_i) = \cos(a_i) \cdot \begin{bmatrix}
1 & -2^{-i} \\
2^{-i} & 1
\end{bmatrix}
\]

Where:

\[
a_i = \tan^{-1}(2^{-i})
\]

With these choices for the \(a_i\), rotation is accomplished using only right shifts. If the \(\cos(a_i)\) term is neglected in order to avoid the multiplication operations, the length of the initial vector is increased each time it is rotated by using right shifts only. This increase may be compensated for by decreasing the length of the vector prior to rotation. Since the algorithm will use \(B\) successive rotations, all rotations may be compensated for initially.
using one collective length correction factor, C. The value of C is found by grouping all of the $a_i$ terms together as follows:

$$ C = \left( \prod_{i=0}^{B} \cos(\tan^{-1}(2^{-i})) \right)^{-1} $$

For $B = 16$ bits, C may be calculated as approximately 0.6072. The final algorithms follow. Notice that $x$ and $y$ represent vector coordinates, while $z$ is now the angle register.

$$ \sin(z) \{
\hspace{1cm} x = 1.6468; \\
\hspace{1cm} y = 0; \\
\hspace{1cm} \text{for (i=0; i<R; i++)} \{ \\
\hspace{2cm} \text{if (z > 0)} \\
\hspace{3cm} x = x - y*2^(-i) \\
\hspace{3cm} y = y + x*2^(-i) \\
\hspace{3cm} z = z - \arctan(2^(-i)) \\
\hspace{2cm} \text{else} \\
\hspace{3cm} x = x + y*2^(-i) \\
\hspace{3cm} y = y - x*2^(-i) \\
\hspace{3cm} z = z + \arctan(2^(-i)) \\
\hspace{1cm} \} \\
\hspace{1cm} \text{return(y)} \\
\} $$

$$ \cos(z) \{
\hspace{1cm} x = 1.6468; \\
\hspace{1cm} y = 0; \\
\hspace{1cm} \text{for (i=0; i<R; i++)} \{ \\
\hspace{2cm} \text{if (z > 0)} \\
\hspace{3cm} x = x - y*2^(-i) \\
\hspace{3cm} y = y + x*2^(-i) \\
\hspace{3cm} z = z - \arctan(2^(-i)) \\
\hspace{2cm} \text{else} \\
\hspace{3cm} x = x + y*2^(-i) \\
\hspace{3cm} y = y - x*2^(-i) 
\} $$
\[ z = z + \arctan(2^{-i}) \]

\}

return(x)
\}

It may be determined that the previous two algorithms will converge as long as:

\[- \sum_{i=0}^{B} \tan^{-1}(2^{-i}) < z < \sum_{i=0}^{B} \tan^{-1}(2^{-i})\]

or

\[-1.7433 < z < 1.7433\]

Since the region of convergence includes both the first and third quadrants, the algorithms will converge for any \( z \) such that \(-\pi/2 < z < \pi/2\).

Mapping the CORDIC algorithms to Micro-Controllers.

The previously discussed algorithms show that CORDIC based computation methods require minimal hardware features to implement. These are:

1) Three registers of length \( B \) bits
2) One, two or three Adders/Subtractors
3) Several small ROM based look-up tables
4) One, two or three shift registers

When implementing CORDIC algorithms on micro-controllers, item four will have the greatest effect on the overall throughput of the system. Multiplication by \( 2^{-i} \) requires that the shift register be capable of performing a right shift by \( i \) bits. Most microcontrollers are only capable of right shifting by 1 bit at a time. Shifting by \( i \) bits requires a software loop to repeat this task \( i \) times, greatly increasing the computation time. The 8051, 6805, and 68HC11 are typical examples of micro controllers which will require software loops to implement the shifter.
Other micro-controllers such as the 68HC332, as well as most Digital Signal Processors, will have a feature known as a barrel shifter. This type of shifter will right shift by $i$ bits in one operation. Typically the shift is also accomplished in 1 clock cycle.

Another possibility for implementing a barrel shifter is to use a multiply instruction that has been optimized for speed. An example of this is the 68HC12, which has a 16 by 16 bit signed multiply, EMULS, that produces a 32 bit result in 3 clock cycles. A right shift by $i$ bits could be accomplished by multiplying by $2^{16-i}$ and discarding the lower 16 bits of the result. One disadvantage of this scheme is that the data is restricted to 16 bits. Other word lengths would require additional cycles.

Once the processor and shift register style is chosen, the next choice to be made involves the data format. Since standard C does not provide a fixed-point data type, the designer has a lot of freedom in choosing the format of the data. It is a good idea, however, to choose a format that fits into 16 or 32 bit words. Even though most CORDIC routines are written in assembly language for speed, 16 or 32 bit words allow data to be passed as either 'int' or 'long int' data types within higher level C subroutines. The format used in the following examples uses a 16 bit format with 4 bits to the left of the decimal point and 12 fractional bits to the right, which is often referred to as 4.12 format. This allows constants such as $\pi$, $e$, and $\sqrt{2}$ to be easily represented without a moving decimal point. The 12 bits of fractional data amount to approximately 3.5 digits of decimal accuracy. The range of this format is calculated as $-8 < x < 7.9997$.

The constants used are found by multiplying by $2^{12}$ (4096), rounding, and converting to hexadecimal. Take the constant $e$ for example:

$$4096 \times e = 11134.08 \approx 11134 = 0x267e$$

All of the data tables necessary for CORDIC computing may be built up this way using a calculator.

Finally with the data format and constant tables established, coding of the algorithms proceeds in a straightforward manner. The following examples demonstrate CORDIC algorithms implemented on the 8051, 68HC11 and 68332 micro-
controllers. These code fragments were assembled with the INTEL MCS-51 Macro-Assembler and Motorola Freeware Assemblers and tested on hardware development systems.

Conclusion

CORDIC algorithms have been around for some time. Volder’s original paper describing the CORDIC technique for calculating trigonometric functions appeared in the 1959 IRE transactions. However, the reasons for using CORDIC algorithms have not changed. The algorithms are efficient in terms of both computation time and hardware resources. In most micro-controller systems, especially those performing control functions, these resources are normally already at a premium. Using CORDIC algorithms may allow a single chip solution where algorithms using the look-up table method may require a large ROM size or where power series calculations require a separate co-processor because of the computation time required.

The algorithms presented have been selected to represent a small core of functions commonly required in micro-controller systems which could be discussed in detail. For each algorithm in this core, three areas have been covered: theory of operation, determining the range of convergence for the algorithm and finally implementation of the algorithm on a typical micro-controller. Using these selected algorithms as a starting point, it is possible to develop libraries containing many similar elementary functions. Among those possible with only minor modifications to the algorithms presented are: ln(x), e^x, tan^-1(x), \sqrt{x^2+y^2}, and e^{j\theta}. Among the references, Jarvis gives an excellent table of the functions possible using CORDIC routines.

Listing 1 – 10 to the power x algorithm implemented on the 8051

```asciidoc
;--;
; Power10x.a51 ;
; Calculation of 10 to the power of x for the 8051 using CORDIC methods. ;
; on entry x1 contains the high byte of the 16 bit input and x0 contains ;
; the low byte. On exit z1:z0 contains z = 10^x. All data is in 4.12 ;
; format. ;
```
Author: Mike Pashea 3-13-2000

Comment: This routine requires approximately 1.2mS using a 12Mhz crystal (1161 clock cycles). It will converge for
-0.5393 < x < 0.3772.

x1 data 10h ; x data register
x0 data 11h

z1 data 12h ; z data register
z0 data 13h

zsl data 14h ; z shift register
z0 data 15h

power10x: mov z1,#10h ; [2] z = 1.0
mov z0,#00 ; [2]
mov r0,#1 ; [1]
mov dptr,#powr10tab ; [2]

power10x1: mov zsl,z1 ; [2] Put z in the shift register.
mov z0,z0 ; [2]
mov a,r0 ; [1] Initialize the loop counter
mov r1,a ; [1]

power10x2: mov a,zsl ; [1] High byte in the accumulator.
mov c,acc.7 ; [1] Move sign bit into carry and
rrc a ; [1] arithmetically shift right.
mov zsl,a ; [1] Update the high byte.
mov a,z0 ; [1] Low byte in the accumulator.
rrc a ; [1] Now shift the low byte right
mov z0,a ; [1] and update.
djnz r1,power10x2 ; [2] Loop for the correct number
mov a,x1 ; [1] is x > 0 ?
jb acc.7,power10x3 ; [2]
movx a,@dptr ; [2] yes, x = x - log(1+2^(-i))
inc dptr ; [1]
add a,x0 ; [1]
mov x0,a ; [1]
movx a,@dptr ; [2]
inc dptr ; [1]
addc a,x1 ; [1]
mov x1,a ; [1]
mov a,z0 ; [1] z = z * (1 + 2^(-i))
add a,zs0 ; [1]
mov z0,a ; [1]
mov a,z1 ; [1]
addc a,zsl ; [1]
mov z1,a ; [1]
ic dptr ; [1]
ic dptr ; [1]
sjmp power10x4 ; [2]

power10x3: inc dptr ; [1] no, x = x - log(1 - 2^(-i))
inc dptr ; [1]
movx a,@dptr ; [2]
ic dptr ; [1]
add a,x0 ; [1]
Listing 2 – Base 10 Logarithm Implemented on the 68HC11

******************************************************************************************************
*                                                                                                      *
*  LOG10.ASM                                                                                             *
*                                                                                                      *
*  Calculation of log10(x) for the 68HC11 using CORDIC methods. On entry *                             *
*  x is on the top of the stack. On exit z = log10(x) is at the top of the *                          *
*  stack. All data is 16 bits long using 4.12 format.                                                     *
*                                                                                                      *
*  The stack frame is used as follows:                                                                  *
*                                                                                                      *
*  0,x  ==>  j  -  shift register counter                                                            *
*  1,x  ==>  i  -  outer loop counter                                                                  *
******************************************************************************************************
* 2, x => z - output  
* 4, x => xs - x shift register  
* 6, x => return address  
* 8, x => x - input  
*  
* Comment: This routine is meant to reflect the structure of the algorithm  
* without being optimized for speed. As written the algorithm  
* requires a maximum of 2836 clock cycles or approximately 1.4mS.  
* The execution time could be greatly improved by using internal  
* memory to hold variables.  
*  
* Author: Mike Pashea 3-11-2000  
*  
******************************************************************************

log10  ldy #log10_rom  ; y points to the ROM table
ldx #0  
  pshx  ; local space for xs
  pshx  ; local space for z
  pshx  ; local space for i and j
  tsx  ; x points to the top of the stack
ldaa #1  ; initialize the loop counter
staa 1,x  

log10_1  ldd 8,x  ; load the shift register with x
std 4,x  
ldaa 1,x  
  staa 0,x  ; shift counter equal to loop counter

log10_2  asr 4,x  ; perform one arithmetic shift right
ror 5,x  
  dec 0,x  
  bne log10_2  ; repeat until all shifts are complete

log10_3  ldd 8,x  ; is x greater than 1 ?
  subd #4096  
  ble log10_4  ; no, x should be increased
  ldd 8,x  ; yes, x should be decreased
  subd 4,x  ; x = x - x*2^(-i)
  std 8,x  
  ldd 2,x  ; z = z + -log10(1-2^(-i))
  addd 0,y  
  std 2,x  
  bra log10_5  

log10_4  ldd 8,x  ; x = x + x*2^(-i)
  addd 4,x  
  std 8,x  
  ldd 2,x  ; z = z - log(1+2^(-i))
  subd 2,y  
  std 2,x  

log10_5  iny  ; increment the ROM pointer so that it
iny  ; points to the next set of entries in
iny  ; the ROM table.
iny  
inc 1,x  
lda #12  ; increment loop counter
cmpa 1,x  ; have we calculated each bit?
bge log10_1  ; no, loop until we are done
ldd 2,x  ; yes, replace x with z
std 8,x  
pulx  ; remove local variables from stack
The ROM table for \( \log_{10}(1-2^{-i}) \) and \( \log(1+2^{-i}) \). The values are interlaced and only the magnitude is stored. The software either will add the positive values and subtract the negative ones.

Listing 3 - Sin(z) and Cos(z) algorithms implemented on a 68000 or 68332

**SINCOZ.S -** Computation of SIN(z) and COS(z) using CORDIC methods for the 68000 or 68HC332 processors. On entry the angle \( z \), in radians is on the top of the stack. On exit, the COS(\( x \)) is at the top of the stack followed by SIN(\( x \)). All data in this example uses 32 bit words in 8.24 format.

Author: Mike Pashea 3-14-200

```assembly
C equ 10187768

sincos move.l #atantab,a0 ; A0 points to the ROM table
move.l 4(sp),d4 ; D4 contains the angle, \(z \)
move.l #C,d0 ; D0 contains x
move.l #0,d2 ; D2 contains y
move.b #0,d5 ; D5 contains the loop index

sincos1 move.l d0,d1 ; D1 is the x shift register
move.l d2,d3 ; D3 is the y shift register
asr.l d5,d1 ; xshift = x >>i
asr.l d5,d3 ; yshift = y >>i
cmpi.l #0,d4 ; if (z > 0)
bre sincos2 ;
sub.l d3,d0 ; x = x - yshift
add.l d1,d2 ; y = y + xshift
sub.l (a0),d4 ; z = z - ai
bra sincos3 ; else
```
sincos2    add.l d3,d0 ; x = x + yshift
sub.l d1,d2 ; y = y - xshift
add.l (a0),d4 ; z = z + a
sincos3    addq.l #4,a0 ; increment ROM pointer
addq.b #1,d5 ; increment index
cmpi.b #24,d5 ; is i <= 24 ?
ble  sincos1 ; if not loop until finished
move.l (sp)+,d1 ; save the return address
move.l d2,(sp) ; put sin(z) on the stack
move.l d0,-{sp} ; put cos(z) on the stack
move.l d1,-(sp) ; restore the return address
rts ; and return

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
*                                                                             *
*  The ROM table for arctan(2^(-i)). All constants are in 8.24 format.       *
*                                                                             *
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

atantab   dc.l  13176795
          dc.l  7778716
          dc.l  4110059
          dc.l  2086331
          dc.l  1047214
          dc.l   524117
          dc.l   262123
          dc.l   131069
          dc.l    65536
          dc.l    32768
          dc.l   16384
          dc.l    8192
          dc.l    4096
          dc.l    2048
          dc.l    1024
          dc.l     512
          dc.l     256
          dc.l     128
          dc.l      64
          dc.l      32
          dc.l      16
          dc.l       8
          dc.l       4
          dc.l       2
          dc.l       1
References


